Hermitian K-theory for stable $\infty$-categories II: Cobordism categories and additivity - Université d'Artois Access content directly
Preprints, Working Papers, ... Year :

Hermitian K-theory for stable $\infty$-categories II: Cobordism categories and additivity

Baptiste Calmès
Emanuele Dotto
  • Function : Author
Yonatan Harpaz
Fabian Hebestreit
  • Function : Author
Markus Land
  • Function : Author
Kristian Moi
  • Function : Author
Denis Nardin
  • Function : Author
Thomas Nikolaus
  • Function : Author
Wolfgang Steimle
  • Function : Author

Abstract

We define Grothendieck-Witt spectra in the setting of Poincar\'e $\infty$-categories, show that they fit into an extension with a K- and an L-theoretic part and deduce localisation sequences for Verdier quotients. As special cases we obtain generalisations of Karoubi's fundamental and periodicity theorems for rings in which 2 need not be invertible. A novel feature of our approach is the systematic use of ideas from cobordism theory by interpreting the hermitian Q-construction as an algebraic cobordism category. We also use this to give a new description of the LA-spectra of Weiss and Williams.

Dates and versions

hal-02941256 , version 1 (16-09-2020)

Identifiers

Cite

Baptiste Calmès, Emanuele Dotto, Yonatan Harpaz, Fabian Hebestreit, Markus Land, et al.. Hermitian K-theory for stable $\infty$-categories II: Cobordism categories and additivity. 2020. ⟨hal-02941256⟩

Collections

UNIV-ARTOIS INSMI
52 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More