
HAL Id: hal-03937145
https://univ-artois.hal.science/hal-03937145

Submitted on 13 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proceedings of the 2022 XCSP3 Competition
Gilles Audemard, Christophe Lecoutre, Emmanuel Lonca

To cite this version:
Gilles Audemard, Christophe Lecoutre, Emmanuel Lonca. Proceedings of the 2022 XCSP3 Competi-
tion. Arxiv. 2022. �hal-03937145�

https://univ-artois.hal.science/hal-03937145
https://hal.archives-ouvertes.fr

XCSP3 Competition 2022

Proceedings

Gilles Audemard Christophe Lecoutre Emmanuel Lonca

CRIL, University of Artois & CNRS
France

{audemard,lecoutre,lonca}@cril.fr

September 1, 2022

ar
X

iv
:2

20
9.

00
91

7v
1

 [
cs

.A
I]

 2
 S

ep
 2

02
2

2

This document represents the proceedings of the XCSP3 Competition 2022. The website
containing all detailed results is available at: http://www.cril.univ-artois.fr/XCSP22/

The organization of this 2022 competition involved the following tasks:

• adjusting general details (dates, tracks, . . .) by G. Audemard, C. Lecoutre and E. Lonca

• selecting instances (problems, models and data) by C. Lecoutre

• receiving, testing and executing solvers on CRIL cluster by E. Lonca

• validating solvers and rankings by C. Lecoutre and E. Lonca

• developping the 2022 website dedicated to results by G. Audemard

http://www.cril.univ-artois.fr/XCSP22/

Contents

1 About the Selection of Problems in 2022 5

2 Problems and Models 9
2.1 CSP . 9

2.1.1 Aztec Diamond . 9
2.1.2 Blocked Queens . 10
2.1.3 Car Sequencing . 11
2.1.4 Costas Arrays . 13
2.1.5 Crosswords (Satisfaction) . 14
2.1.6 Crypto . 15
2.1.7 Diamond Free . 15
2.1.8 Eternity . 16
2.1.9 Hadamard . 17
2.1.10 Hidato . 18
2.1.11 Knight Tour . 19
2.1.12 Molnar . 20
2.1.13 Number Partitioning . 21
2.1.14 (Nurse) Rostering . 22
2.1.15 Orthogonal Latin Squares . 24
2.1.16 PB (Pseudo-Boolean) . 25
2.1.17 Quasigroup . 25
2.1.18 Room Mate . 27
2.1.19 Solitaire Battleship . 28
2.1.20 Sports Scheduling . 30
2.1.21 Superpermutation . 31

2.2 COP . 33
2.2.1 Aircraft Landing . 33
2.2.2 Clock Triplets . 34
2.2.3 Coins Grid . 35
2.2.4 CVRP . 36
2.2.5 Cyclic Bandwith . 37
2.2.6 DC . 38
2.2.7 Echelon Stock . 38
2.2.8 Filters . 41
2.2.9 Itemset Mining . 42
2.2.10 Multi-Agent Path Finding . 43
2.2.11 Nurse Rostering . 45
2.2.12 Nursing Workload . 48
2.2.13 RCPSP . 49
2.2.14 RLFAP . 50

3

4 CONTENTS

2.2.15 Spot5 . 52
2.2.16 TAL . 53
2.2.17 Triangular . 53
2.2.18 Warehouse . 54
2.2.19 War or Peace . 55

3 Solvers 57
ACE . 57
ACE ABD . 60
BTD . 62
Choco . 64
CoSoCo . 68
Exchequer . 69
Fun-sCOP . 71
Glasgow . 73
MiniCPBP . 74
Mistral . 77
NACRE . 80
Picat . 82
RBO . 85
Sat4j-CSP-PBj . 87
toulbar2 . 89

4 Results 93
4.1 Context . 93
4.2 Rankings . 94

Chapter 1

About the Selection of Problems
in 2022

Remember that the complete description, Version 3.0.7, of the format (XCSP3) used to
represent combinatorial constrained problems can be found in [4]. For the 2022 competition,
we have limited XCSP3 to its kernel, called XCSP3-core [5]. This means that the scope of
XCSP3 is restricted to:

• integer variables,

• CSP and COP problems,

• a set of 21 popular (global) constraints for Standard tracks:

– generic constraints: intension and extension

– language-based constraints: regular and mdd

– comparison constraints: allDifferent, allEqual, ordered and lex

– counting/summing constraints: sum, count, nValues and cardinality

– connection constraints: maximum, minimum, element and channel

– packing/scheduling constraints: noOverlap and cumulative

– circuit, instantiation and slide

and a small set of constraints for Mini-solver tracks.

For the 2022 competition, 41 problems have been selected. They are succinctly presented
in Table 1.1. For each problem, the type of optimization is indicated (if any), as well as the
involved constraints. At this point, do note that making a good selection of problems/instances
is a difficult task. In our opinion, important criteria for a good selection are:

• the novelty of problems, avoiding constraint solvers to overfit already published problems;

• the diversity of constraints, trying to represent all of the most popular constraints (those
from XCSP3-core) while paying attention to not over-representing some of them (in par-
ticular, second class citizens);

• the scaling up of problems.

Novelty. Many problems are new in 2022, with most of the models written in PyCSP3. Two
problems have been submitted, in response to the call.

5

6 CHAPTER 1. ABOUT THE SELECTION OF PROBLEMS IN 2022

CSP Problems Global Constraints (including extension)

Aztec Diamond extension (∗)
Blocked Queens allDifferent

Car Sequencing cardinality, extension, sum
Costas Arrays allDifferent

Crosswords extension

Crypto extension (∗)
Diamond Free lex, sum
Eternity allDifferent, extension
Hadamard sum

Hidato allDifferent, extension (∗)
Knight Tour circuit

Molnar lex, sum
Number Partitioning allDifferent, sum
Rostering allDifferent, regular
Ortho. Latin Squares allDifferent, extension
Pseudo-Boolean sum

Quasigroup allDifferent, element
Room Mate
Solitaire Batleship cardinality, count, extension, regular, sum
Sports Scheduling allDifferent, cardinality, count, extension
Superpermutation allDifferent, element

COP Problems Optimization Global Constraints (including extension)

Aircraft Landing min EXPR allDifferent, extension, noOverlap
Clock Triplets min VAR allDifferent, sum
Coins Grid min SUM sum

CVRP min SUM allDifferent, cardinality, element, sum
Cyclic Bandwith min MAXIMUM allDifferent

DC min SUM extension, sum
Echelon Stock min SUM sum

Filters min MAXIMUM noOverlap

Itemset Mining max SUM count, lex, sum
Multi-Agent Path Finding min MAXIMUM allDifferent, extension

min SUM
Nurse Rostering min SUM count, extension, regular, slide, sum
Nursing Workload min SUM cardinality, sum
RCPSP min VAR cumulative

RLFAP min MAXIMUM
min N VALUES
min SUM

Spot5 min SUM extension

TAL min SUM count, extension
Triangular max SUM sum

Warehouse min SUM count, element
War or Peace min SUM sum

Table 1.1: Selected Problems for the main tracks of the 2022 Competition. VAR/EXPR means
that a variable/expression must be optimized. For RLFAP and Multi-agent Path Finding, the
type of objective differs depending on instances. When extension is followed by (∗), it means
that short tables are involved.

7

Diversity. Of course, not all types of constraints are equally involved in the selected bench-
mark. In the next edition, we shall attempt to foster the representation of CP-representative
global constraints such as cumulative and noOverlap, and possibly, to introduce a couple of
new ones (e.g., binPacking).

Scaling up. It is always interesting to see how constraint solvers behave when the instances
of a problem become harder and harder. This is what we call the scaling behavior of solvers.
For most of the problems in the 2022 competition, we have selected series of instances with
regular increasing difficulty. It is important to note that assessing the difficulty of instances
was determined with ACE, which is the main reason why ACE is off-competition (due to this
strong bias).

Selection. This year, the selection of problems and instances has been performed by Christophe
Lecoutre. As a consequence, the solver ACE was labelled off-competition.

8 CHAPTER 1. ABOUT THE SELECTION OF PROBLEMS IN 2022

Chapter 2

Problems and Models

In the next sections, you will find all models used for generating the XCSP3 instances of the
2022 competition (for main CSP and COP tracks). Almost all models are written in PyCSP3

[8], Version 2.0, officially released in December 2021; see https://pycsp.org/.

2.1 CSP

2.1.1 Aztec Diamond

Description. An Aztec diamond of order n consists of 2n centered rows of unit squares, of
respective lengths 2, 4, . . . , 2n−2, 2n, 2n−2, . . . , 4, 2. An Aztec diamond of order n has exactly
2(n∗(n+1)/2) tilings by dominos. See wikipedia.org. Building a solution analytically may be
easy. However, a CP model is interesting as one can easily add side constraints to form Aztec
diamonds with some specific properties (although this is not the case here).

Data. Only one integer is required to specify a specific instance. Values of n used for the
competition are:

25, 50, 75, 100, 150, 200, 250, 300

Model. The PyCSP3 model, in a file ’AztecDiamond.py’, used for the competition is:

PyCSP3 Model 1

from pycsp3 import *

n = data # order of the Aztec diamond

def valid(i, j):

if i < 0 or i >= n * 2 or j < 0 or j >= n * 2:

return False

if i < n - 1 and (j < n - 1 - i or j > n + i):

return False

if i > n and (j < i - n or j > 3 * n - i - 1):

return False

return True

def inner(i, j):

return valid(i, j - 1) and valid(i, j + 1) and valid(i - 1, j) and valid(i + 1, j)

9

https://pycsp.org/
https://en.wikipedia.org/wiki/Aztec_diamond

10 CHAPTER 2. PROBLEMS AND MODELS

all valid cells

valid_cells = [(i, j) for i in range(2 * n) for j in range(2 * n) if valid(i, j)]

all inner cells, i.e., valid cells that are not situated on the border of the diamond

inners = [(i, j) for i, j in valid_cells if inner(i, j)]

all border cells, i.e., valid cells that are situated on the border of the diamond

borders = [(i, j) for i, j in valid_cells if not inner(i, j)]

x[i][j] is the position (0: left, 1: right, 2:top, 3: bottom) of the second part of the

domino whose first part occupies the cell ar row i and column j

x = VarArray(size=[2 * n, 2 * n], dom=lambda i, j: range(4) if valid(i, j) else None)

satisfy(

constraining cells situated on the top left border

[(x[i][j], x[i][j + 1], x[i + 1, j]) in {(1, 0, ANY), (3, ANY, 2)}

for i, j in borders if not valid(i, j - 1) and not valid(i - 1, j)],

constraining cells situated on the top right border

[(x[i][j], x[i][j - 1], x[i + 1, j]) in {(0, 1, ANY), (3, ANY, 2)}

for i, j in borders if not valid(i, j + 1) and not valid(i - 1, j)],

constraining cells situated on the bottom left border

[(x[i][j], x[i][j + 1], x[i - 1, j]) in {(1, 0, ANY), (2, ANY, 3)}

for i, j in borders if not valid(i, j - 1) and not valid(i + 1, j)],

constraining cells situated on the bottom right border

[(x[i][j], x[i][j - 1], x[i - 1, j]) in {(0, 1, ANY), (2, ANY, 3)}

for i, j in borders if not valid(i, j + 1) and not valid(i + 1, j)],

constraining inner cells

[(x[i][j], x[i][j - 1], x[i, j + 1], x[i - 1][j], x[i + 1][j]) in {(0, 1, ANY, ANY, ANY),

(1, ANY, 0, ANY, ANY), (2, ANY, ANY, 3, ANY), (3, ANY, ANY, ANY, 2)}

for i, j in inners]

)

The model involves a two-dimensional array of variable x, and several groups (lists) of starred
table constraints (ANY is ’*’). A series of 8 instances has been selected for the competition.
For generating an XCSP3 instance (file), you can execute for example:

python AztecDiamond.py -data=100

2.1.2 Blocked Queens

This is Problem 080 on CSPLib, called Blocked n-Queens Problem.

Description (excerpt from CSPLib). The blocked n-queens problem is a variant of n-queens
which has been proven to be NP-complete as a decision problem and #P-complete as a counting
problem. The blocked n-queens problem is a variant where, as well as n, the input contains
a list of squares which are blocked. A solution to the problem is a solution to the n-Queens
problem containing no queens on any of the blocked squares.

Data. As an illustration of data specifying an instance of this problem, we have:

{

"n": 6,

"blocks": [[0,2], [3,4], [5,1]]

}

https://www.csplib.org/Problems/prob080/

2.1. CSP 11

A series of 400 instances (not in JSON format) can be found on CSPLib. They were used
in ASP competitions. The problem was also the subject of the LP/CP programming contest
at ICLP 2016.

Model. The PyCSP3 model, in a file ’BlockedQueens.py’, used for the competition is:

PyCSP3 Model 2

from pycsp3 import *

n, blocks = data

q[i] is the column where is put the ith queen (at row i)

q = VarArray(size=n, dom=range(n))

satisfy(

respecting blocks

[q[i] != j for (i, j) in blocks],

no two queens on the same column

AllDifferent(q),

no two queens on the same diagonal

[abs(q[i] - q[j]) != abs(i - j) for i, j in combinations(n, 2)]

)

The model involves a global constraint AllDifferent and some unary and binary intensional
constraints. A series of 8 instances has been selected for the competition. For generating an
XCSP3 instance (file), you can execute for example:

python BlockedQueens.py -data=28-1449787798 -dataparser=BlockedQueens_Parser.py

where ’28-1449787798’ is a data file in Essence format and ’BlockedQueens Parser.py’ is a
parser (i.e., a Python file allowing us to load data that are not directly given in JSON format).
Note that for saving data in JSON files, you can add the option ’-dataexport’.

2.1.3 Car Sequencing

This is Problem 001 on CSPLib.

Description (excerpt from CSPLib). A number of cars are to be produced; they are not
identical, because different options are available as variants on the basic model. The assembly
line has different stations which install the various options (air-conditioning, sun-roof, etc.).
These stations have been designed to handle at most a certain percentage of the cars passing
along the assembly line. Furthermore, the cars requiring a certain option must not be bunched
together, otherwise the station will not be able to cope. Consequently, the cars must be arranged
in a sequence so that the capacity of each station is never exceeded. For instance, if a particular
station can only cope with at most half of the cars passing along the line, the sequence must
be built so that at most 1 car in any 2 requires that option.

Data. As an illustration of data specifying an instance of this problem, we have:

{

"carClasses": [

{ "demand": 1, "options": [1, 0, 1, 1, 0] },

https://www.csplib.org/Problems/prob001/

12 CHAPTER 2. PROBLEMS AND MODELS

{ "demand": 2, "options": [0, 1, 0, 0, 1] },

{ "demand": 2, "options": [0, 1, 0, 1, 0] },

{ "demand": 2, "options": [1, 1, 0, 0, 0] }

],

"optionLimits": [

{ "num": 1, "den": 2 },

{ "num": 2, "den": 3 },

{ "num": 1, "den": 3 },

{ "num": 2, "den": 5 },

{ "num": 1, "den": 5 }

]

}

Model. The PyCSP3 model, in a file ’CarSequencing.py’, used for the competition is:

PyCSP3 Model 3

from pycsp3 import *

classes, limits = data

demands = [demand for demand, _ in classes]

nCars, nClasses, nOptions = sum(demands), len(classes), len(limits)

c[i] is the class of the ith assembled car

c = VarArray(size=nCars, dom=range(nClasses))

o[i][k] is 1 if the ith assembled car has option k

o = VarArray(size=[nCars, nOptions], dom={0, 1})

satisfy(

building the right numbers of cars per class

Cardinality(c, occurrences={j: demands[j] for j in range(nClasses)})

)

if not variant():

satisfy(

computing assembled car options

imply(c[i] == j, o[i][k] == options[k]) for i in range(nCars)

for j, (_, options) in enumerate(classes) for k in range(nOptions)

)

elif variant('table'):
satisfy(

computing assembled car options

(c[i], *o[i]) in {(j, *options) for j, (_, options) in enumerate(classes)}

for i in range(nCars)

)

def sum_from_full_consecutive_blocks(k, nb):

nb stands for the number of consecutive blocks (of cars) set to their maximal capacity

n_cars_with_option = sum(demand for (demand, options) in classes if options[k] == 1)

remaining = n_cars_with_option - nb * limits[k].num

possible = nCars - nb * limits[k].den

return Sum(o[:possible, k]) >= remaining if remaining > 0 and possible > 0 else None

satisfy(

respecting option frequencies

[Sum(o[i:i + den, k]) <= num for k, (num, den) in enumerate(limits)

for i in range(nCars) if i <= nCars - den],

2.1. CSP 13

additional constraints by reasoning from consecutive blocks tag(redundant-constraints)

[sum_from_full_consecutive_blocks(k, nb) for k in range(nOptions)

for nb in range(ceil(nCars // limits[k].den) + 1)]

)

This model involves 2 arrays of variables and 4 types of constraints: Cardinality, Intension,
Extension and Sum. Actually, depending on the chosen variant, either Extension constraints
are posted, or binary Intension constraints are posted with predicates like ci = j ⇒ oi,k = v
where v is the value (0 or 1) of the kth option of the jth class. The last group of constraints
corresponds to redundant constraints. A series of 10 instances has been selected for the com-
petition (8 for variant ’table’). For generating an XCSP3 instance (file), you can execute for
example:

python CarSequencing.py -data=90-01 -dataparser=CarSequencing_Parser.py

python CarSequencing.py -variant=table -data=90-01 -dataparser=CarSequencing_Parser.py

where ’90-01’ is a data file and ’CarSequencing Parser.py’ is a parser (i.e., a Python file
allowing us to load data that are not directly given in JSON format). Note that when you omit
to write ’-variant=table’, you get the main variant. Note that for saving data in JSON files,
you can add the option ’-dataexport’.

2.1.4 Costas Arrays

This is Problem 076 on CSPLib.

Description (excerpt from CSPLib). A costas array is a pattern of n marks on an n × n
grid, one mark per row and one per column, in which the n × (n − 1)/2 vectors between the
marks are all different. Such patterns are important as they provide a template for generating
radar and sonar signals with ideal ambiguity functions.

Data. Only one integer is required to specify a specific instance. Values of n used for the
instances in the competition are:

15, 16, 17, 18, 19, 20, 22, 24, 26, 28

Model. The PyCSP3 model, in a file ’CostasArray.py’, used for the competition is:

PyCSP3 Model 4

from pycsp3 import *

n = data

x[i] is the row where is put the ith mark (on the ith column)

x = VarArray(size=n, dom=range(n))

satisfy(

all marks are on different rows (and columns)

AllDifferent(x),

all displacement vectors between the marks must be different

[AllDifferent(x[i] - x[i + d] for i in range(n - d)) for d in range(1, n - 1)]

)

https://www.csplib.org/Problems/prob076/

14 CHAPTER 2. PROBLEMS AND MODELS

This model involves 1 array of variables and several constraints AllDifferent. A series of
10 instances has been selected for the competition. For generating an XCSP3 instance (file),
you can execute for example:

python CostasArray.py -data=20

2.1.5 Crosswords (Satisfaction)

This problem has already been used in previous XCSP competitions, because it notably permits
to compare filtering algorithms on large table constraints.

Description. Given a grid with imposed black cells (spots) and a dictionary, the problem is
to fulfill the grid with the words contained in the dictionary.

Data. As an illustration of data specifying an instance of this problem, we have:

{

"spots": [[0,1,0,0,0], [0,0,0,0,0], [0,0,1,0,0], [0,0,0,0,0], [0,0,0,0,1]],

"dict": "ogd2008"

}

Model. A model similar to the following one, in a file ’Crossword.py’, was used in 2018:

PyCSP3 Model 5

from pycsp3 import *

spots, dict_name = data

loading words of the dictionary

words = dict()

for line in open(dict_name):

code = alphabet_positions(line.strip().lower())

words.setdefault(len(code), []).append(code)

For Hole, i and j are indexes (one of them being a slice) and r is the size

Hole = namedtuple("Hole", "i j r")

def build_hole(row, col, size, horizontal):

sl = slice(col, col + size)

return Hole(row, sl, size) if horizontal else Hole(sl, row, size)

def find_holes(matrix, transposed):

p, q = len(matrix), len(matrix[0])

t = []

for i in range(p):

start = -1

for j in range(q):

if matrix[i][j] == 1:

if start != -1 and j - start >= 2:

t.append(build_hole(i, start, j - start, not transposed))

start = -1

elif start == -1:

start = j

elif j == q - 1 and q - start >= 2:

t.append(build_hole(i, start, q - start, not transposed))

return t

2.1. CSP 15

holes = find_holes(spots, False) + find_holes(columns(spots), True)

n, m, nHoles = len(spots), len(spots[0]), len(holes)

x[i][j] is the letter, number from 0 to 25, at row i and column j (when no spot)

x = VarArray(size=[n, m], dom=lambda i, j: range(26) if spots[i][j] == 0 else None)

satisfy(

fill the grid with words

x[i, j] in words[r] for (i, j, r) in holes

)

This model only involves 1 array of variables and 1 group of ordinary table constraints. For
clarity, we use an auxiliary named tuple Hole. A series of 13 instances, with only blank grids,
has been selected for the competition. Note that it is not possible to write x[i][j] when i is a
slice; this must be x[i, j]. For generating an XCSP3 instance (file), you can execute for example:

python Crossword.py -data=[vg-04-05,dict=ogd2008] -dataparser=Crossword_Parser.py

where ’vg-04-05’ is a data file representing a grid, ’ogd2008’ is the name of a dictionary file
(we need to use ’dict=’ as a prefix, otherwise the dictionary will be appended to the first file)
and ’Crossword Parser.py’ is a parser (i.e., a Python file allowing us to load data that are not
directly given in JSON format). Note that for saving data in JSON files, you can add the
option ’-dataexport’.

Important: The series of instances, used for the 2022 competition comes from the 2018
competition, and compiling instances from the PyCSP3 model above may produce slighlty
different files.

2.1.6 Crypto

A series of 10 instances has been generated (independently of PyCSP3), and submitted to the
2022 competition by Martin Mariusz Lester. This benchmark encodes 10 instances of breaking
the weak stream cipher Crypto1. M. M. Lester generated the instances using the tool Grain of
Salt (which produces CNF format SAT instances), then translated them into XCSP3 instances.
Martin picked instances that were relatively harder for MiniSAT to solve (2-4 minutes). He
hypothesised that these instances would be hard for any XCSP3 solver that does not use a SAT
solver as the backend, with XCSP3 solvers using more modern solvers faring best. Perhaps
this benchmark is not very interesting from the perspective of using XCSP3 as an intermediate
language, as it is a translation back from a low-level language that loses all of the structure.
Nonetheless, it may serve as a reminder that these kinds of encodings exist.

2.1.7 Diamond Free

This is Problem 050 on CSPLib, called Diamond-free Degree Sequences.

Description (excerpt from CSPLib). A diamond is a set of four vertices in a graph such
that there are at least five edges between those vertices. Conversely, a graph is diamond-free
if it has no diamond as an induced subgraph, i.e. for every set of four vertices the number of
edges between those vertices is at most four.

Data. Only one integer is required to specify a specific instance. Values of n used for the
instances in the competition are:

30, 40, 50, 60, 70, 80

https://en.wikipedia.org/wiki/Crypto-1
https://www.msoos.org/grain-of-salt/
https://www.msoos.org/grain-of-salt/
https://www.csplib.org/Problems/prob050/

16 CHAPTER 2. PROBLEMS AND MODELS

Model. The PyCSP3 model, in a file ’DiamondFree.py’, used for the competition is:

PyCSP3 Model 6

from pycsp3 import *

n = data

x is the adjacency matrix

x = VarArray(size=[n, n], dom=lambda i, j: {0, 1} if i != j else {0})

y[i] is the degree of the ith node

y = VarArray(size=n, dom={i for i in range(1, n) if i % 3 == 0})

s is the sum of all degrees

s = Var(dom={i for i in range(n, n * (n - 1) + 1) if i % 12 == 0})

satisfy(

ensuring the absence of diamond in the graph

[Sum(x[i][j], x[i][k], x[i][l], x[j][k], x[j][l], x[k][l]) <= 4

for i, j, k, l in combinations(n, 4)],

ensuring that the graph is undirected (symmetric)

[x[i][j] == x[j][i] for i, j in combinations(n, 2)],

computing node degrees

[Sum(x[i]) == y[i] for i in range(n)],

computing the sum of node degrees

Sum(y) == s,

tag(symmetry-breaking)

[Decreasing(y), LexIncreasing(x)]

)

This model involves 2 arrays of variables, a stand-alone variable and 4 types of constraints:
Sum, Intension, Decreasing and LexIncreasing. A series of 6 instances has been selected for
the competition. For generating an XCSP3 instance (file), you can execute for example:

python DiamondFree.py -data=40

2.1.8 Eternity

Eternity II is a famous edge-matching puzzle, released in July 2007 by TOMY, with a 2 million
dollars prize for the first submitted solution; see, e.g., [3]. Here, we are interested in instances
derived from the original problem by the BeCool team of the UCL (“Université Catholique de
Louvain”) who proposed them for the 2018 competition.

Description. On a board of size n×m, you have to put square tiles (pieces) that are described
by four colors (one for each direction : top, right, bottom and left). All adjacent tiles on the
board must have matching colors along their common edge. All edges must have color ’0’ on
the border of the board.

Data. As an illustration of data specifying an instance of this problem, we have:

{

"n": 3,

"m": 3,

http://becool.info.ucl.ac.be/

2.1. CSP 17

"pieces": [

[0,0,1,1], [0,0,1,2], [0,0,2,1], [0,0,2,2], [0,1,3,2],

[0,1,4,1], [0,2,3,1], [0,2,4,2], [3,3,4,4]

]

}

Model. The PyCSP3 model, in a file ’Eternity.py’, used for the competition is:

PyCSP3 Model 7

from pycsp3 import *

n, m, pieces = data

assert n * m == len(pieces), "badly formed data"

max_value = max(max(piece) for piece in pieces) # max possible value on pieces

table = {(i, piece[r % 4], piece[(r + 1) % 4], piece[(r + 2) % 4], piece[(r + 3) % 4])

for i, piece in enumerate(pieces) for r in range(4)}

x[i][j] is the index of the piece at row i and column j

x = VarArray(size=[n, m], dom=range(n * m))

t[i][j] is the value at the top of the piece at row i and column j

t = VarArray(size=[n + 1, m], dom=range(max_value + 1))

l[i][j] is the value at the left of the piece at row i and column j

l = VarArray(size=[n, m + 1], dom=range(max_value + 1))

satisfy(

all pieces must be placed (only once)

AllDifferent(x),

all pieces must be valid (i.e., must correspond to those given initially,

possibly after applying some rotation)

[(x[i][j], t[i][j], l[i][j + 1], t[i + 1][j], l[i][j]) in table

for i in range(n) for j in range(m)],

putting special value 0 on borders

[z == 0 for z in t[0] + l[:, -1] + t[-1] + l[:, 0]]

)

This model involves 3 arrays of variables and 3 types of constraints: AllDifferent, Extension
and Intension. A series of 10 instances has been selected for the competition. For generating
an XCSP3 instance (file), you can execute for example:

python Eternity.py -data=06-06 -dataparser=Eternity_Parser.py

where ’06-06’ is a data file representing a puzzle and ’Eternity Parser.py’ is a parser (i.e., a
Python file allowing us to load data that are not directly given in JSON format). Note that
for saving data in JSON files, you can add the option ’-dataexport’.

2.1.9 Hadamard

This is Problem 084 on CSPLib, called 2cc Hadamard matrix Legendre pairs.

Description. For every odd positive integer n (and m = (n−1)/2), the 2cc Hadamard matrix
Legendre pairs are defined from m quadratic constraints and 2 linear constraints.

https://www.csplib.org/Problems/prob084/

18 CHAPTER 2. PROBLEMS AND MODELS

Data. Only one integer is required to specify a specific instance. Values of n used for the
instances in the competition are:

17, 19, 21, 23, 25, 27, 29, 31, 35, 41

Model. The PyCSP3 model, in a file ’Hadamard.py’, used for the competition is:

PyCSP3 Model 8

from pycsp3 import *

n = data

assert n % 2 == 1

m = (n - 1) // 2

x[i] is the ith value of the first sequence

x = VarArray(size=n, dom={-1, 1})

y[i] is the ith value of the second sequence

y = VarArray(size=n, dom={-1, 1})

satisfy(

Sum(x) == 1,

Sum(y) == 1,

quadratic constraints

[

Sum(x[i] * x[(i + k) % n] for i in range(n))

+ Sum(y[i] * y[(i + k) % n] for i in range(n))

== -2 for k in range(1, m + 1)

]

)

This model involves 2 arrays of variables and several constraints Sum. A series of 10 instances
has been selected for the competition. For generating an XCSP3 instance (file), you can execute
for example:

python Hadamard.py -data=23

2.1.10 Hidato

Description. Hidato, also known as Hidoku is a logic puzzle game invented by Gyora M.
Benedek, an Israeli mathematician. The goal of Hidato is to fill the grid with consecutive
numbers that connect horizontally, vertically, or diagonally. See wikipedia.org.

Data. As an illustration of data specifying an instance of this problem, we have:

{

"n": 5,

"m": 5,

"clues": [

[0, 0, 20, 0, 0],

[0, 0, 0, 16, 18],

[22, 0, 15, 0, 0],

[23, 0, 1, 14, 11],

[0, 25, 0, 0, 12]

]

}

https://en.wikipedia.org/wiki/Hidato

2.1. CSP 19

Model. The PyCSP3 model, in a file ’Hidato.py’, used for the competition is:

PyCSP3 Model 9

from pycsp3 import *

n, m, clues = data # clues are given by strictly positive values

x[i][j] is the value in the grid at row i and column j

x = VarArray(size=[n, m], dom=range(1, n * m + 1))

satisfy(

all values must be different

AllDifferent(x),

respecting clues

[x[i][j] == clues[i][j] for i in range(n) for j in range(m) if clues and clues[i][j] > 0]

)

if variant('table'):

def table(i, j):

corners = {(0, 0), (0, m - 1), (n - 1, 0), (n - 1, m - 1)}

r = 3 if (i, j) in corners else 5 if i in (0, n - 1) or j in (0, m - 1) else 8

return [(v, *[v + 1 if l == k else ANY for l in range(r)]) for v in range(1, n * m)

for k in range(r)]

+ [(n * m, *[ANY] * r)]

satisfy(

ensuring adjacent consecutive numbers

(x[i][j], x.around(i, j)) in table(i, j) for i in range(n) for j in range(m)

)

else: # variant not considered for the competition

...

This model involves 1 array of variables and 3 types of constraints: AllDifferent, Extension
and Intension. A series of 9 instances (with variant ’table’) has been selected for the compe-
tition. For generating an XCSP3 instance (file), you can execute for example:

python Hidato.py -variant=table -data=p1.json

or with an empty grid of size 10× 10:

python Hidato.py -variant=table -data=[10,10,null]

2.1.11 Knight Tour

Description. A knight’s tour is a sequence of moves of a knight on a chessboard such that
the knight visits every square exactly once. If the knight ends on a square that is one knight’s
move from the beginning square (so that it could tour the board again immediately, following
the same path), the tour is closed (or re-entrant); otherwise, it is open. See wikipedia.org.

Data. Only one integer is required to specify a specific instance. Values of n used for the
instances in the competition are:

10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Model. The PyCSP3 model, in a file ’KnightTour2.py’, used for the competition is:

https://en.wikipedia.org/wiki/Knight%27s_tour

20 CHAPTER 2. PROBLEMS AND MODELS

PyCSP3 Model 10

from pycsp3 import *

n = data

def domain_x(i):

r, c = i // n, i % n

t = [(r - 2, c - 1), (r - 2, c + 1), (r - 1, c - 2), (r - 1, c + 2),

(r + 1, c - 2), (r + 1, c + 2), (r + 2, c - 1), (r + 2, c + 1)]

return {k * n + l for (k, l) in t if 0 <= k < n and 0 <= l < n}

x[i] is the cell number that comes in the tour (by the knight) after cell i

x = VarArray(size=n * n, dom=domain_x)

satisfy(

the knights form a circuit (tour)

Circuit(x),

the first move is set tag(symmetry-breaking)

x[0] == n + 2

)

This model involves 1 array of variables and 2 types of constraints: Circuit and Intension.
A series of 10 instances has been selected for the competition. For generating an XCSP3 instance
(file), you can execute for example:

python KnightTour2.py -data=50

2.1.12 Molnar

This is Problem 035 on CSPLib.

Description (excerpt from CSPLib). The problem (in this variant) is to construct a k × k
matrix M with values strictly greater than 1 such that both the determinant of M and the
determinant of M when squared values are considered are equal to 1 The solutions to this
problem are significant in classifying certain types of topological spaces.

Data. Only two integers are required to specify a specific instance. Values of k and d used
for the instances in the competition are:

(2,20), (2,25), (3,7), (3,8), (3,9), (4,3), (4,4), (4,5), (5,4), (5,5)

Model. The PyCSP3 model, in a file ’Molnar.py’, used for the competition is:

PyCSP3 Model 11

from pycsp3 import *

from pycsp3.classes.entities import TypeNode

k, d = data

def det_terms(t):

if len(t) == 2:

return [t[0][0] * t[1][1], -(t[0][1] * t[1][0])]

subterms = [det_terms([[v for j, v in enumerate(row) if j != i] for row in t[1:]])

for i in range(len(t))]

https://www.csplib.org/Problems/prob035/

2.1. CSP 21

return [t[0][i] * sub if i % 2 == 0 else -(t[0][i] * sub) for i in range(len(t))

for sub in subterms[i]]

def determinant(t):

terms = det_terms(t)

we extract coeffs from terms for posting a simpler Sum constraint later

terms = [(term.sons[0], -1) if term.type == TypeNode.NEG else (term, 1) for term in terms]

return [t for t, _ in terms] * [c for _, c in terms]

x[i][j] is the value of the matrix at row i and column j

x = VarArray(size=[k, k], dom=range(2, d + 1))

y[i][j] is the square of the value of the matrix x at row i and column j

y = VarArray(size=[k, k], dom=range(4, d * d + 1))

satisfy(

computing y

[y[i][j] == x[i][j] * x[i][j] for i in range(k) for j in range(k)],

determinant(x) == 1,

determinant(y) == 1,

tag(symmetryBreaking)

LexIncreasing(x, matrix=True)

)

This model involves 2 arrays of variables and 3 types of constraints: Sum, LexIncreasing
and Intension. A series of 10 instances has been selected for the competition. For generating
an XCSP3 instance (file), you can execute for example:

python Molnar.py -data=[4,5]

2.1.13 Number Partitioning

This is Problem 049 on CSPLib.

Description (excerpt from CSPLib). This problem consists in finding a partition of the set
of numbers {1, 2, . . . , n} into two sets A and B such that:

• A and B have the same cardinality

• the sum of numbers in A is equal to the sum of numbers in B

• the sum of squares of numbers in A is equal to the sum of squares of numbers in B

There is no solution for n < 8.

Data. Only one integer is required to specify a specific instance. Values of n used for the
instances in the competition are:

20, 50, 80, 110, 140, 170, 200, 230, 260, 290

Model. The PyCSP3 model, in a file ’NumberPartitioning.py’, used for the competition is:

https://www.csplib.org/Problems/prob049/

22 CHAPTER 2. PROBLEMS AND MODELS

PyCSP3 Model 12

from pycsp3 import *

n = data

assert n % 2 == 0, "The value of n must be even"

x[i] is the ith value of the first set

x = VarArray(size=n // 2, dom=range(1, n + 1))

y[i] is the ith value of the second set

y = VarArray(size=n // 2, dom=range(1, n + 1))

satisfy(

AllDifferent(x + y),

tag(power1)

[

Sum(x) == n * (n + 1) // 4,

Sum(y) == n * (n + 1) // 4

],

tag(power2)

[

Sum(x[i] * x[i] for i in range(n // 2)) == n * (n + 1) * (2 * n + 1) // 12,

Sum(y[i] * y[i] for i in range(n // 2)) == n * (n + 1) * (2 * n + 1) // 12

],

tag(symmetry-breaking)

[

x[0] == 1,

Increasing(x, strict=True),

Increasing(y, strict=True)

]

)

This model involves 2 arrays of variables and 3 types of constraints: AllDifferent, Sum
and Increasing. A series of 10 instances has been selected for the competition. For generating
an XCSP3 instance (file), you can execute for example:

python NumberPartitioning.py -data=50

2.1.14 (Nurse) Rostering

This problem was described by G. Pesant, C.-G. Quimper and A. Zanarini [11]

Description. This problem was inspired by a rostering context. The objective is to schedule
n employees over a span of n time periods. In each time period, n − 1 tasks need to be
accomplished and one employee out of the n has a break. The tasks are fully ordered 1 to n−1;
for each employee the schedule has to respect the following rules:

• two consecutive time periods have to be assigned to either two consecutive tasks, in no
matter which order i.e. (t, t + 1) or (t + 1, t), or to the same task i.e. (t, t);

• an employee can have a break after no matter which task;

• after a break an employee cannot perform the task that precedes the task prior to the
break, i.e. (t, break, t - 1) is not allowed.

The problem is modeled with one constraint Regular per row and one constraint Alldifferent
per column.

2.1. CSP 23

Data. As an illustration of data specifying an instance of this problem, we have:

{

"preset": [[7, 5, 8], [7, 0, 8], [3, 5, 5], [0, 5, 4], [1, 7, 7]],

"forbidden": []

}

Model. The PyCSP3 model, in a file ’Rostering.py’, used for the competition is:

PyCSP3 Model 13

from pycsp3 import *

n = 10

preset, forbidden = data

def automaton():

q(1,i) means before break and just after reading i

q(2,i) means just after reading break (0) and i before

q(3,i) means after break and just after reading i

q, rng = Automaton.q, range(1, n)

t = [(q(0), 0, q(2, 0))] + [(q(2, 0), i, q(3, i)) for i in rng]

t.extend((q(0), i, q(1, i)) for i in rng)

BE CAREFUL: rule made stricter below than Pesant's rule

t.extend((q(1, i), j, q(1, j)) for i in rng for j in (i - 1, i + 1) if 1 <= j < n)

t.extend((q(1, i), 0, q(2, i)) for i in rng)

BE CAREFUL: rule made stricter below than Pesant's rule

t.extend((q(2, i), j, q(3, j)) for i in rng for j in rng if abs(i - j) != 1)

BE CAREFUL: rule made stricter below than Pesant's rule

t.extend((q(3, i), j, q(3, j)) for i in rng for j in (i - 1, i + 1) if 1 <= j < n)

return Automaton(start=q(0), final=[q(2, i) for i in rng] + [q(3, i) for i in rng],

transitions=t)

A = automaton()

x[i][j] is the task (or break) performed by the ith employee at time j

x = VarArray(size=[n, n], dom=range(n))

satisfy(

[x[i][j] == k for (i, j, k) in preset],

[x[i][j] != k for (i, j, k) in forbidden],

[x[i] in A for i in range(n)],

[AllDifferent(x[:, j]) for j in range(n)]

)

This model involves 1 array of variables and 3 types of constraints: Regular, AllDifferent
and Intension. A series of 10 instances has been selected for the competition. For generating
an XCSP3 instance (file), you can execute for example:

python Rostering.py -data=roster-5-00-02.dat -dataparser=Rostering_Parser.py

where ’roster-5-00-02.dat’ is a data file and ’Rostering Parser.py’ is a parser (i.e., a Python file
allowing us to load data that are not directly given in JSON format). Note that for saving data
in JSON files, you can add the option ’-dataexport’.

24 CHAPTER 2. PROBLEMS AND MODELS

2.1.15 Orthogonal Latin Squares

Description. A Latin square of order n is an n by n array filled with n different symbols (for
example, values between 1 and n), each occurring exactly once in each row and exactly once
in each column. Two latin squares of the same order n are orthogonal if each pair of elements
in the same position occurs exactly once. The most easy way to see this is by concatenating
elements in the same position and verify that no pair appears twice. There are orthogonal latin
squares of any size except 1, 2, and 6. See wikipedia.org.

Data. Only one integer is required to specify a specific instance. Values of n used for the
instances in the competition are:

5, 6, 7, 8, 9, 10, 11, 12, 15, 20

Model. The PyCSP3 model, in a file ’Ortholatin.py’, used for the competition is:

PyCSP3 Model 14

from pycsp3 import *

n = data

x is the first Latin square

x = VarArray(size=[n, n], dom=range(n))

y is the second Latin square

y = VarArray(size=[n, n], dom=range(n))

z is the matrix used to control orthogonality

z = VarArray(size=[n * n], dom=range(n * n))

table = {(i, j, i * n + j) for i in range(n) for j in range(n)}

satisfy(

ensuring that x is a Latin square

AllDifferent(x, matrix=True),

ensuring that y is a Latin square

AllDifferent(y, matrix=True),

ensuring that values on diagonals are different tag(diagonals)

[AllDifferent(t) for t in [diagonal_down(x), diagonal_up(x),

diagonal_down(y), diagonal_up(y)]],

ensuring orthogonality of x and y through z

AllDifferent(z),

computing z from x and y

[(x[i][j], y[i][j], z[i * n + j]) in table for i in range(n) for j in range(n)],

tag(symmetry-breaking)

[(x[0][j] == j, y[0][j] == j) for j in range(n)]

)

This model involves 3 arrays of variables and 3 types of constraints: AllDifferent, Extension
and Intension. A series of 10 instances has been selected for the competition. For generating
an XCSP3 instance (file), you can execute for example:

python Ortholatin.py -data=10

https://en.wikipedia.org/wiki/Mutually_orthogonal_Latin_squares

2.1. CSP 25

2.1.16 PB (Pseudo-Boolean)

This problem has been already used in previous XCSP competitions.

Description. Pseudo-Boolean problems generalize SAT problems by allowing linear con-
straints and, possibly, a linear objective function.

Data. As an illustration of data specifying an instance of this problem, we have:

{

"n": 144,

"e": 704,

"constraints": [

{ "coeffs": [1,1,1,1,1], "nums": [1,17,33,49,81], "op": "=", "limit": 1 },

{ "coeffs": [1,1,1,1,1], "nums": [2,18,34,50,82], "op": "=", "limit": 1 },

...

],

"objective": null

}

Model. The PyCSP3 model, in a file ’PseudoBoolean.py’, used for the competition is:

PyCSP3 Model 15

from pycsp3 import *

n, e, constraints, objective = data

x = VarArray(size=n, dom={0, 1})

satisfy(

respecting each linear constraint

Sum(x[nums] * coeffs, condition=(op, limit)) for (coeffs, nums, op, limit) in constraints

)

This problem involves 1 array of variables and 1 type of constraints: Sum. A series of 11
instances has been selected for the competition. For generating an XCSP3 instance (file), you
can execute for example:

python PseudoBoolean.py -data=BeauxArts-K65.opb -dataparser=PseudoBoolean_Parser.py

where ’BeauxArts-K65.opb’ is a data file and ’PseudoBoolean Parser.py’ is a parser (i.e., a
Python file allowing us to load data that are not directly given in JSON format). Note that
for saving data in JSON files, you can add the option ’-dataexport’.

2.1.17 Quasigroup

This is Problem 003 on CSPLib, called Quasigroup Existence.

Description (excerpt from CSPLib). An order n quasigroup is a Latin square of size n.
That is, a n×n multiplication table in which each element occurs once in every row and column.
A quasigroup can be specified by a set and a binary multiplication operator, ∗ defined over this
set. Quasigroup existence problems determine the existence or non-existence of quasigroups of
a given size with additional properties. For example:

https://www.csplib.org/Problems/prob003

26 CHAPTER 2. PROBLEMS AND MODELS

• QG3: quasigroups for which (a ∗ b) ∗ (b ∗ a) = a

• QG5: quasigroups for which ((b ∗ a) ∗ b) ∗ b = a

• QG6: quasigroups for which (a ∗ b) ∗ b = a ∗ (a ∗ b)
For each of these problems, we may additionally demand that the quasigroup is idempotent.
That is, a ∗ a = a for every element a.

Data. Only one integer is required to specify a specific instance. Values of n used for the
instances in the competition are:

• 8, 9, 10, 11, 16 for variant base-v3

• 8, 9, 10, 11, 16 for variant base-v5

• 8, 9, 10, 11, 16 for variant base-v6

Model. The PyCSP3 model, in a file ’QuasiGroup.py’, used for the competition is:

PyCSP3 Model 16

from pycsp3 import *

n = data

x[i][j] is the value at row i and column j of the quasi-group

x = VarArray(size=[n, n], dom=range(n))

satisfy(

ensuring a Latin square

AllDifferent(x, matrix=True),

ensuring idempotence tag(idempotence)

[x[i][i] == i for i in range(n)]

)

if variant("base"):

if subvariant("v3"):

satisfy(

x[x[i][j], x[j][i]] == i for i in range(n) for j in range(n)

)

elif subvariant("v5"):

satisfy(

x[x[x[j][i], j], j] == i for i in range(n) for j in range(n)

)

elif subvariant("v6"):

satisfy(

x[x[i][j], j] == x[i, x[i][j]] for i in range(n) for j in range(n)

)

elif ... # not considered for the competition

Three variants of the problem are described here, involving 1 array of variables and various
forms of constraints Element. Note the presence of the tag ’idempotence’, which easily allows us
to activate or deactivate the associated constraints, at parsing time. A series of 3× 5 instances
has been generated, for problems QG3, QG5 and QG6.

For generating an XCSP3 instance (file), you can execute for example:

python QuasiGroup.py -variant=base-v3 -data=10

python QuasiGroup.py -variant=base-v5 -data=10

python QuasiGroup.py -variant=base-v6 -data=10

2.1. CSP 27

2.1.18 Room Mate

Description (from Wikipedia). In mathematics, economics and computer science, the stable-
roommate problem is the problem of finding a stable matching for an even-sized set. A matching
is a separation of the set into disjoint pairs (‘roommates’). The matching is stable if there are
no two elements which are not roommates and which both prefer each other to their roommate
under the matching. This is distinct from the stable-marriage problem in that the stable-
roommates problem allows matches between any two elements, not just between classes of
”men” and ”women”. See wikipedia.org.

Data. As an illustration of data specifying an instance of this problem, we have:

{

"preferences": [

[3,4,2,6,5], [6,5,4,1,3], [2,4,5,1,6],

[5,2,3,6,1], [3,1,2,4,6], [5,1,3,4,2]

]

}

Model. The PyCSP3 model, in a file ’RoomMate.py’, used for the competition is:

PyCSP3 Model 17

from pycsp3 import *

preferences = data

n = len(preferences)

def pref_rank():

pref = [[0] * n for _ in range(n)] # pref[i][k] = j <-> guy i has guy j as kth choice

rank = [[0] * n for _ in range(n)] # rank[i][j] = k <-> guy i ranks guy j as kth choice

for i in range(n):

for k in range(len(preferences[i])):

j = preferences[i][k] - 1 # because we start at 0

rank[i][j] = k

pref[i][k] = j

rank[i][i] = len(preferences[i])

pref[i][len(preferences[i])] = i

return pref, rank

pref, rank = pref_rank()

x[i] is the value of k, meaning that j = pref[i][k] is the paired agent

x = VarArray(size=n, dom=lambda i: range(len(preferences[i])))

satisfy(

(imply(x[i] > rank[i][k], x[k] < rank[k][i]),

imply(x[i] == rank[i][k], x[k] == rank[k][i]))

for i in range(n) for k in pref[i] if k != i

)

This problem involves 1 array of variables and 1 type of constraints: Intension. A series
of 6 instances has been selected for the competition (coming from the repository developed by
Patrick Prosser). For generating an XCSP3 instance (file), you can execute for example:

python RoomMate.py -data=sr0400.txt -dataparser=RoomMate_Parser.py

https://en.wikipedia.org/wiki/Stable_roommates_problem
http://www.dcs.gla.ac.uk/~pat/roommates/distribution/

28 CHAPTER 2. PROBLEMS AND MODELS

where ’sr0400.txt’ is a data file and ’RoomMate Parser.py’ is a parser (i.e., a Python file allowing
us to load data that are not directly given in JSON format). Note that for saving data in JSON
files, you can add the option ’-dataexport’.

2.1.19 Solitaire Battleship

This is Problem 014 on CSPLib.

Description (excerpt from CSPLib). As an illustration, a specific fleet consists of one
battleship (four grid squares in length), two cruisers (each three grid squares long), three three
destroyers (each two squares long) and four submarines (one square each). The ships may
be oriented horizontally or vertically, and no two ships will occupy adjacent grid squares, not
even diagonally. The digits along the right side of and below the grid indicate the number
of grid squares in the corresponding rows and columns that are occupied by vessels. In each
of the puzzles, one or more ‘shots’ have been taken to start you off. These may show water
(indicated by wavy lines), a complete submarine (a circle), or the middle (a square), or the end
(a rounded-off square) of a longer vessel.

Data. As an illustration of data specifying an instance of this problem, we have:

{

"fleet":[{"size":4,"cnt":1}, {"size":3,"cnt":2},

{"size":2,"cnt":3}, {"size":1,"cnt":4}],

"hints":[{"type":"c","row":7,"col":10},{"type":"w","row":1,"col":6}],

"rowSums":[2,4,3,3,2,4,1,1,0,0],

"colSums":[0,5,0,2,2,3,1,3,2,2]

}

Model. The PyCSP3 model, in a file ’SolitaireBattleship.py’, used for the competition is:

PyCSP3 Model 18

from pycsp3 import *

fleet, hints, rowSums, colSums = data

surfaces = [ship.size * ship.cnt for ship in fleet]

maxSurf = max(surfaces)

pos, neg = [ship.size for ship in fleet], [-ship.size for ship in fleet]

n, nTypes = len(colSums), len(pos)

def automaton(horizontal):

q = Automaton.q # for building state names

t = [(q(0), 0, q(0)), (q(0), neg if horizontal else pos, "qq"), ("qq", 0, q(0))]

for i in pos:

v = i if horizontal else -i

t.append((q(0), v, q(i, 1)))

t.extend((q(i, j), v, q(i, j + 1)) for j in range(1, i))

t.append((q(i, i), 0, q(0)))

return Automaton(start=q(0), final=q(0), transitions=t)

horizontal_automaton, vertical_automaton = automaton(True), automaton(False)

s[i][j] is 1 iff the cell at row i and col j is occupied by a ship segment

s = VarArray(size=[n + 2, n + 2], dom={0, 1})

https://www.csplib.org/Problems/prob014

2.1. CSP 29

t[i][j] is 0 iff the cell at row i and col j is unoccupied, the type (size) of the ship

fragment otherwise, when positive, the ship is put horizontally, vertically otherwise

t = VarArray(size=[n + 2, n + 2], dom=set(neg) | {0} | set(pos))

cp[i] is the number of positive ship segments of type i

cp = VarArray(size=nTypes, dom=range(maxSurf + 1))

cn[i] is the number of negative ship segments of type i

cn = VarArray(size=nTypes, dom=lambda i: {0} if fleet[i].size == 1 else range(maxSurf + 1))

def hint_ctr(c, i, j):

if c == 'w':
return s[i][j] == 0

if c in {'c', 'l', 'r', 't', 'b'}:
return [

s[i][j] == 1,

s[i - 1][j] == (1 if c == 'b' else 0),

s[i + 1][j] == (1 if c == 't' else 0),

s[i][j - 1] == (1 if c == 'r' else 0),

s[i][j + 1] == (1 if c == 'l' else 0)

]

if c == 'm':
return [

s[i][j] == 1,

t[i][j] not in {-2, -1, 0, 1, 2},

(s[i - 1][j], s[i + 1][j], s[i][j - 1], s[i][j + 1]) in {(0, 0, 1, 1), (1, 1, 0, 0)}

]

satisfy(

no ship on borders

[(s[0][k] == 0, s[-1][k] == 0, s[k][0] == 0, s[k][-1] == 0) for k in range(n + 2)],

respecting the specified row tallies

[Sum(s[i + 1]) == k for i, k in enumerate(rowSums)],

respecting the specified column tallies

[Sum(s[:, j + 1]) == k for j, k in enumerate(colSums)],

being careful about cells on diagonals

[(s[i][j], s[i - 1][j - 1], s[i - 1][j + 1], s[i + 1][j - 1], s[i + 1][j + 1])

in {(0, ANY, ANY, ANY, ANY), (1, 0, 0, 0, 0)}

for i in range(1, n + 1) for j in range(1, n + 1)],

tag(channeling)

[iff(s[i][j] == 1, t[i][j] != 0) for i in range(n + 2) for j in range(n + 2)],

counting the number of occurrences of ship segments of each type

Cardinality(t[1:n + 1, 1:n + 1], occurrences={pos[i]: cp[i] for i in range(nTypes)}

+ {neg[i]: cn[i] for i in range(nTypes)}),

ensuring the right number of occurrences of ship segments of each type

[cp[i] + cn[i] == surfaces[i] for i in range(nTypes)],

ensuring row connectedness of ship segments

[t[i + 1] in horizontal_automaton for i in range(n)],

ensuring column connectedness of ship segments

[t[:, j + 1] in vertical_automaton for j in range(n)],

tag(clues)

[hint_ctr(c, i, j) for (c, i, j) in hints] if hints else None

)

This problem involves 4 arrays of variables and 5 types of constraints: Sum, Extension,

30 CHAPTER 2. PROBLEMS AND MODELS

Cardinality, Regular and Intension. A series of 8 instances has been selected for the com-
petition (coming from Minizinc repository). For generating an XCSP3 instance (file), you can
execute for example:

python SolitaireBattleship.py -data=sb_13_13_5_1.dzn

-dataparser=SolitaireBattleship_ParserZ.py

where ’sb 13 13 5 1.dzn’ is a data file and ’SolitaireBattleship ParserZ.py’ is a parser (i.e., a
Python file allowing us to load data that are not directly given in JSON format). Note that
for saving data in JSON files, you can add the option ’-dataexport’.

2.1.20 Sports Scheduling

This is Problem 026 on CSPLib, called the Sports Tournament Scheduling.

Description (excerpt from CSPLib). The problem is to schedule a tournament of n teams
over n − 1 weeks, with each week divided into n/2 periods, and each period divided into two
slots. The first team in each slot plays at home, whilst the second plays the first team away. A
tournament must satisfy the following three constraints: every team plays once a week; every
team plays at most twice in the same period over the tournament; every team plays every other
team.

Data. Only one integer is required to specify a specific instance. Values of n used for the
instances in the competition are:

8, 10, 12, 14, 16, 18, 20, 22, 24, 26

Model. The PyCSP3 model, in a file ’SportsScheduling.py’, used for the competition is:

PyCSP3 Model 19

from pycsp3 import *

nTeams = data

nWeeks, nPeriods, nMatches = nTeams - 1, nTeams // 2, (nTeams - 1) * nTeams // 2

def match_number(t1, t2):

return nMatches - ((nTeams - t1) * (nTeams - t1 - 1)) // 2 + (t2 - t1 - 1)

table = {(t1, t2, match_number(t1, t2)) for t1, t2 in combinations(nTeams, 2)}

m[w][p] is the number of the match at week w and period p

m = VarArray(size=[nWeeks, nPeriods], dom=range(nMatches))

x[w][p] is the first team for the match at week w and period p

x = VarArray(size=[nWeeks, nPeriods], dom=range(nTeams))

y[w][p] is the second team for the match at week w and period p

y = VarArray(size=[nWeeks, nPeriods], dom=range(nTeams))

satisfy(

all matches are different (no team can play twice against another team)

AllDifferent(m),

linking variables through ternary table constraints

[(x[w][p], y[w][p], m[w][p]) in table for w in range(nWeeks) for p in range(nPeriods)],

https://github.com/MiniZinc/minizinc-benchmarks/tree/master/solbat
https://www.csplib.org/Problems/prob026

2.1. CSP 31

each week, all teams are different (each team plays each week)

[AllDifferent(x[w] + y[w]) for w in range(nWeeks)],

each team plays at most two times in each period

[Cardinality(x[:, p] + y[:, p], occurrences={t: range(1, 3) for t in range(nTeams)})

for p in range(nPeriods)],

tag(symmetry-breaking)

[

the match '0 versus t' (with t strictly greater than 0) appears at week t-1

[Count(m[w], value=match_number(0, w + 1)) == 1 for w in range(nWeeks)],

the first week is set : 0 vs 1, 2 vs 3, 4 vs 5, etc.

[m[0][p] == match_number(2 * p, 2 * p + 1) for p in range(nPeriods)]

]

)

if variant("dummy"):

xd[p] is the first team for the dummy match of period p tag(dummy-week)

xd = VarArray(size=nPeriods, dom=range(nTeams))

yd[p] is the second team for the dummy match of period p tag(dummy-week)

yd = VarArray(size=nPeriods, dom=range(nTeams))

satisfy(

handling dummy week (variables and constraints) tag(dummy-week)

[

all teams are different in the dummy week

AllDifferent(xd + yd),

each team plays two times in each period

[Cardinality(x[:, p] + y[:, p] + [xd[p], yd[p]],

occurrences={t: 2 for t in range(nTeams)}) for p in range(nPeriods)],

tag(symmetry-breaking)

[xd[p] < yd[p] for p in range(nPeriods)]

]

)

This model involves 3 + 2 arrays of variables and 5 types of constraints: Cardinality,
AllDifferent, Count (Exactly1), Extension and Intension. A series of 10 instances has
been selected for the competition, for variant ’dummy’. For generating an XCSP3 instance
(file), you can execute for example:

python SportScheduling.py -variant=dummy -data=10

2.1.21 Superpermutation

Description (from Wikipedia). In combinatorial mathematics, a superpermutation on n
symbols is a string that contains each permutation of n symbols as a substring. While trivial
superpermutations can simply be made up of every permutation listed together, superpermu-
tations can also be shorter (except for the trivial case of n = 1) because overlap is allowed. For
instance, in the case of n = 2, the superpermutation 1221 contains all possible permutations
(12 and 21), but the shorter string 121 also contains both permutations. It has been shown
that for 1 ≤ n ≤ 5, the smallest superpermutation on n symbols has length 1! + 2! + ... +
n!. The first four smallest superpermutations have respective lengths 1, 3, 9, and 33, forming
the strings 1, 121, 123121321, and 123412314231243121342132413214321. However, for n = 5,
there are several smallest superpermutations having the length 153. See wikipedia.org.

https://en.wikipedia.org/wiki/Stable_roommates_problem

32 CHAPTER 2. PROBLEMS AND MODELS

Data. Only one integer is required to specify a specific instance. Values of n used for the
instances in the competition are:

• 3, 4, 5 for main variant

• 3, 4, 5 for variant ’table’

Model. The PyCSP3 model, in a file ’Superpermutation.py’, used for the competition is:

PyCSP3 Model 20

from pycsp3 import *

n = data

m = sum(factorial(i) for i in range(1, n + 1)) # the length of the sequence

assert 2 <= n <= 5, "for the moment, the model is valid for n between 2 and 5"

permutations = list(permutations(list(range(1, n + 1))))

nPermutations = len(permutations)

x[i] is the ith value of the sequence

x = VarArray(size=m, dom=range(1, n + 1))

if not variant():

p[j] is the index in the sequence of the first value of the jth permutation

p = VarArray(size=nPermutations, dom=range(m))

satisfy(

all permutations start at different indexes tag(redundant-constraints)

AllDifferent(p),

ensuring that each permutation occurs in the sequence

[x[p[j] + k] == permutations[j][k] for k in range(n) for j in range(nPermutations)]

)

elif variant("table"):

nPatterns = m - n + 1 # a pattern is a possible subsequence of length n

gap = nPatterns - nPermutations # the gap corresponds to the flexibility we have

table = [(i, *t) for i, t in enumerate(permutations)]

table.extend((-1, *(v if k in (i, j) else ANY for k in range(n)))

for v in range(n) for i, j in combinations(n, 2))

y[i] is the index of the permutation x[i:i+n] or -1 if this is not a permutation

y = VarArray(size=nPatterns, dom=range(-1, nPermutations))

satisfy(

identifying each pattern (subsequence of n values)

[(y[i], x[i:i + n]) in table for i in range(nPatterns)],

ensuring that each permutation occurs in the sequence

Cardinality(y, occurrences={-1: range(gap + 1)}

+ {i: range(1, gap + 1) for i in range(nPermutations)})

)

satisfy(

setting the first permutation tag(symmetry-breaking)

[x[i] == i + 1 for i in range(n)],

constraining a palindrome tag(palindrome)

[x[i] == x[-1 - i] for i in range(m // 2)]

)

2.2. COP 33

Two variants of the problem are described here, involving 2 arrays of variables and different
types of constraints: AllDifferent, Element, Cardinality, Extension and Intension. A
series of 2× 3 instances has been generated.

For generating an XCSP3 instance (file), you can execute for example:

python Superpermutation.py -data=5

python Superpermutation.py -variant=table -data=5

2.2 COP

2.2.1 Aircraft Landing

Description (from Choco Tutorial). Given a set of planes and runways, the objective is to
minimize the total (weighted) deviation from the target landing time for each plane. There are
costs associated with landing either earlier or later than a target landing time for each plane.
Each plane has to land on one of the runways within its predetermined time windows such that
separation criteria between all pairs of planes are satisfied. See OR-Library.

Data. As an illustration of data specifying an instance of this problem, we have:

{

"n": 10,

"times": [

{"earliest": 129, "target": 155, "latest": 559},

{"earliest": 195, "target": 258, "latest": 744},

...

],

"costs": [

{"early_penalty": 1000, "late_penalty": 1000},

{"early_penalty": 1000, "late_penalty": 1000},

...

],

"separations": [

[99999, 3, 15, 15, 15, 15, 15, 15, 15, 15],

[3, 99999, 15, 15, 15, 15, 15, 15, 15, 15],

...

]

}

Model. The PyCSP3 model, in a file ’AircraftLanding.py’, used for the competition is:

PyCSP3 Model 21

from pycsp3 import *

nPlanes, times, costs, separations = data

earliest, target, latest = zip(*times)

early_penalties, late_penalties = zip(*costs)

x[i] is the landing time of the ith plane

x = VarArray(size=nPlanes, dom=lambda i: range(earliest[i], latest[i] + 1))

e[i] is the earliness of the ith plane

e = VarArray(size=nPlanes, dom=lambda i: range(target[i] - earliest[i] + 1))

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/airlandinfo.html

34 CHAPTER 2. PROBLEMS AND MODELS

t[i] is the tardiness of the ith plane

t = VarArray(size=nPlanes, dom=lambda i: range(latest[i] - target[i] + 1))

satisfy(

planes must land at different times

AllDifferent(x),

the separation time required between any two planes must be satisfied:

[NoOverlap(origins=[x[i], x[j]], lengths=[separations[i][j], separations[j][i]])

for i, j in combinations(nPlanes, 2)]

)

if not variant():

satisfy(

computing earlinesses of planes

[e[i] == max(0, target[i] - x[i]) for i in range(nPlanes)],

computing tardinesses of planes

[t[i] == max(0, x[i] - target[i]) for i in range(nPlanes)],

)

elif variant("table"):

satisfy(

computing earlinesses and tardinesses of planes

(x[i], e[i], t[i]) in {(v, max(0, target[i] - v), max(0, v - target[i]))

for v in range(earliest[i], latest[i] + 1)} for i in range(nPlanes)

)

minimize(

minimizing the deviation cost

e * early_penalties + t * late_penalties

)

Two variants of the problem are described here (but only the variant ’table’ is used for the
competition), involving 3 arrays of variables and different types of constraints: AllDifferent,
NoOverlap and Extension. A series of 13 instances (coming from OR-Library) has been se-
lected.

For generating an XCSP3 instance (file), you can execute for example:

python AircraftLanding.py -variant=table -data=airland01.txt

-dataparser=AircraftLanding_Parser.py

where ’airland01.txt’ is a data file and ’AircraftLanding Parser.py’ is a parser (i.e., a Python
file allowing us to load data that are not directly given in JSON format). Note that for saving
data in JSON files, you can add the option ’-dataexport’.

2.2.2 Clock Triplets

Description. Martin Gardner presented this problem:

Now for a curious little combinatorial puzzle involving the twelve numbers on the
face of a clock. Can you rearrange the numbers (keeping them in a circle) so no
triplet of adjacent numbers has a sum higher than 21? This is the smallest value
that the highest sum of a triplet can have.

See f1compiler.com The problem here is given in a general form.

Data. Only two integers are required to specify a specific instance. Values of r and n used
for the instances in the competition are:

(3,12), (5,15), (7,15), (7,20), (10,15), (10,20), (15,20), (15,30), (20,25), (20,35)

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/airlandinfo.html
http://www.f1compiler.com/samples/Dean%20Clark%27s%20Problem.f1.html

2.2. COP 35

Model. The PyCSP3 model, in a file ’ClockTriplet.py’, used for the competition is:

PyCSP3 Model 22

from pycsp3 import *

r, n = data

x[i] is the ith number in the circle

x = VarArray(size=n, dom=range(1, n + 1))

z is the minimal value such that any (circular) subsequence of x of size r is <= z

z = Var(range(sum(n - v for v in range(r)) + 1))

satisfy(

a permutation is required

AllDifferent(x),

any subsequence of size r must be less than or equal to z

[Sum(x[j] for j in [(i + k) % n for k in range(r)]) <= z for i in range(n)],

tag(symmetry-breaking)

[x[0] == 1, x[1] < x[-1]]

)

minimize(

z

)

This model involves 1 array of variables, a stand-alone variable, and 3 types of constraints:
AllDifferent, Sum and intension. A series of 10 instances has been selected for the compe-
tition. For generating an XCSP3 instance (file), you can execute for example:

python ClockTriplet.py -data=[7,20]

2.2.3 Coins Grid

Description. The problem, from Tony Hurlimann’s working paper called ‘A coin puzzle:
SVOR-contest 2007’, is defined as follows. In a quadratic grid (or a larger chessboard) with
n× n cells, one should place c coins in such a way that the following conditions are fulfilled:

1. In each row exactly c coins must be placed.

2. In each column exactly c coins must be placed.

3. The sum of the quadratic horizontal distance from the main diagonal of all cells containing
a coin must be as small as possible.

4. In each cell at most one coin can be placed.

The problem is initially illustrated with n = 31 and c = 14.

Data. Only two integers are required to specify a specific instance. Values of n and c used
for the instances in the competition are:

(8,4), (10,5), (12,6), (14,7), (16,8), (19,9), (22,10), (25,11), (28,12), (31,14)

Model. The PyCSP3 model, in a file ’CoinsGrid.py’, used for the competition is:

36 CHAPTER 2. PROBLEMS AND MODELS

PyCSP3 Model 23

from pycsp3 import *

n, c = data

x[i][j] is 1 if a coin is placed at row i and column j

x = VarArray(size=[n, n], dom={0, 1})

satisfy(

[Sum(x[i]) == c for i in range(n)],

[Sum(x[:, j]) == c for j in range(n)]

)

minimize(

Sum(x[i][j] * abs(i - j) ** 2 for i in range(n) for j in range(n))

)

This model involves 1 array of variables, and some constraints Sum. A series of 10 instances
has been selected for the competition. For generating an XCSP3 instance (file), you can execute
for example:

python CoinsGrid.py -data=[31,14]

2.2.4 CVRP

This is Problem 086 on CSPLib, called Capacitated Vehicle Routing Problem.

Description. The capacitated vehicle routing problem (CVRP) is a VRP in which vehicles
with limited carrying capacity need to pick up or deliver items at various locations. The items
have a quantity, such as weight or volume, and the vehicles have a maximum capacity that they
can carry. See CVRPLIB.

Data. As an illustration of data specifying an instance of this problem, we have:

{

"n": 32,

"capacity": 100,

"demands": [0,19,...],

"distances":[

[0,35,...],

[35,0,...],

...

]

}

Model. The PyCSP3 model, in a file ’CVRP.py’, used for the competition is:

https://www.csplib.org/Problems/prob086
http://vrp.galgos.inf.puc-rio.br/index.php/en/

2.2. COP 37

PyCSP3 Model 24

from pycsp3 import *

nNodes, capacity, demands, distances = data

nVehicles = nNodes // 4 # hard coding, which can be at least used for Set A (Augerat, 1995)

def max_tour():

t = sorted(demands)

i, s = 1, 0

while i < nNodes and s < capacity:

s += t[i]

i += 1

return i - 2

nSteps = max_tour()

c[i][j] is the jth customer (step) during the tour of the ith vehicle

c = VarArray(size=[nVehicles, nSteps], dom=range(nNodes))

d[i][j] is the demand of the jth customer during the tour of the ith vehicle

d = VarArray(size=[nVehicles, nSteps], dom=demands)

satisfy(

AllDifferent(c, excepting=0),

ensuring that all demands are satisfied

Cardinality(c, occurrences={0: nVehicles * nSteps - nNodes + 1}

+ {i: 1 for i in range(1, nNodes)}),

no holes permitted during tours

[(c[i][j] != 0) | (c[i][j+1] == 0) for i in range(nVehicles) for j in range(nSteps - 1)],

computing the collected demands

[demands[c[i][j]] == d[i][j] for i in range(nVehicles) for j in range(nSteps)],

not exceeding the capacity of each vehicle

[Sum(d[i]) <= capacity for i in range(nVehicles)],

tag(symmetry-breaking)

Decreasing(c[:, 0])

)

minimize(

minimizing the total traveled distance by vehicles

Sum(distances[0][c[i][0]] for i in range(nVehicles))

+ Sum(distances[c[i][j]][c[i][j+1]] for i in range(nVehicles) for j in range(nSteps - 1))

+ Sum(distances[c[i][-1]][0] for i in range(nVehicles))

)

This problem involves 2 arrays of variables and 5 types of constraints: AllDifferent,
Cardinality, Sum, Decreasing and Intension. A series of 10 instances has been selected for
the competition (coming from CVRPLIB). For generating an XCSP3 instance (file), you can
execute for example:

python CVRP.py -data=A-n32-k5.json

2.2.5 Cyclic Bandwith

Description. The Cyclic Bandwidth problem is a graph embedding problem. It was first
stated by Leung et al. in 1984 in relation with the design of a ring interconnection network.

http://vrp.galgos.inf.puc-rio.br/index.php/en/

38 CHAPTER 2. PROBLEMS AND MODELS

Their aim was to find an arrangement on a cycle for a set of computers with a known com-
munication pattern given by a graph, in such a way that every message sent can arrive at its
destination in at most k steps. The CB problem arises also in other important application areas
like VLSI designs, data structure representations, code design and interconnection networks for
parallel computer systems. See E. Rodriguez-Tello’s page.

Data. As an illustration of data specifying an instance of this problem, we have:

{

"n": 104,

"edges": [[30, 101], [101, 43], ...]

}

Model. The PyCSP3 model, in a file ’CyclicBandwith.py’, used for the competition is:

PyCSP3 Model 25

from pycsp3 import *

n, edges = data

x[i] is the label of the ith node

x = VarArray(size=n, dom=range(n))

satisfy(

AllDifferent(x)

)

minimize(

Maximum(min(abs(x[i] - x[j]), n - abs(x[i] - x[j])) for i, j in edges)

)

This problem involves 1 array of variables, 1 constraint AllDifferent and a complex objec-
tive expression. A series of 10 instances has been selected for the competition (coming from E.
Rodriguez-Tello’s page). For generating an XCSP3 instance (file), you can execute for example:

python CyclicBandwith.py -data=path100.rnd -dataparser=CyclicBandwith_Parser.py

where ’path100.rnd’ is a data file and ’CyclicBandwith Parser.py’ is a parser (i.e., a Python
file allowing us to load data that are not directly given in JSON format). Note that for saving
data in JSON files, you can add the option ’-dataexport’.

2.2.6 DC

A series of 26 instances linked to DC (Differential Cryptanalysis) has been generated (indepen-
dently of the library PyCSP3), and submitted to the 2022 competition by François Delobel.
These instances have been generated with Tagada [9] and are about finding truncated differ-
ential features for symmetric encryption algorithms. More specifically, all instances consist in
finding the smallest number of active S-boxes in a truncated differential characteristic (problem
called Step1-opt in the CP paper). The encryption algorithms considered are Midori, Rijndael
and Skinny. There are multiple instances for each cipher, with an increasing number r of
rounds.

2.2.7 Echelon Stock

This is Problem 040 on CSPLib, called Distribution Problem with Wagner-Whitin Costs.

https://www.tamps.cinvestav.mx/~ertello/cbmp.php
https://www.tamps.cinvestav.mx/~ertello/cbmp.php
https://www.tamps.cinvestav.mx/~ertello/cbmp.php
https://www.csplib.org/Problems/prob040

2.2. COP 39

Description (excerpt from CSPLib). A basic distribution problem is described as follows.
Given:

• a supply chain structure of stocking points divided into levels

• a holding cost per unit of inventory at each stocking point, where it is assumed that a
parent has lower holding cost than any of its children

• a procurement cost per stocking point (per order, not per unit of inventory received)

• a number of periods

• a demand for each leaf at each period

find an optimal ordering policy: i.e. a decision as to how much to order at each stocking point
at each time period that minimises cost. The Wagner-Whitin form of the problem assumes
that the holding costs and procurement costs are constant, and that the demands are known
for the entire planning horizon. Furthermore, the stocking points have no maximum capacity
and the starting inventory is 0.

Data. As an illustration of data specifying an instance of this problem, we have:

{

"children": [[], [], [], [0, 1], [2], [3, 4]],

"hcosts": [3, 3, 3, 2, 2, 1],

"pcosts": [1000, 1000, 1000, 1000, 1000, 1000],

"demands": [[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100],

[50, 200, 50, 50, 200, 250, 250, 100, 150, 150, 50, 200],

[250, 50, 350, 50, 250, 50, 250, 50, 350, 100, 50, 50]]

}

Model. The PyCSP3 model, in a file ’EchelonStock2.py’, used for the competition is:

PyCSP3 Model 26

from pycsp3 import *

children, hcosts, pcosts, demands = data

n, nPeriods, nLeaves = len(children), len(demands[0]), len(demands)

below, some simplifications

gcd = reduce(gcd, {v for row in demands for v in row})

demands = [[row[t] // gcd for t in range(nPeriods)] for row in demands]

hcosts = [hcosts[i] * gcd for i in range(n)]

sum_dmds, all_dmds = [], []

for i in range(n):

if i < nLeaves:

sum_dmds.append(sum(demands[i]))

all_dmds.append([sum(demands[i][t:]) for t in range(nPeriods)])

else:

sum_dmds.append(sum(sum_dmds[j] for j in children[i]))

all_dmds.append([sum(all_dmds[j][t] for j in children[i]) for t in range(nPeriods)])

def ratio1(i, coeff=1):

parent = next(j for j in range(n) if i in children[j])

return floor(pcosts[i] // (coeff * (hcosts[i] - hcosts[parent])))

40 CHAPTER 2. PROBLEMS AND MODELS

def ratio2(i, t_inf):

return min(sum(demands[i][t_inf: t_sup + 1]) + ratio1(i, t_sup - t_inf + 1)

for t_sup in range(t_inf, nPeriods))

def domain_x(i, t): # ratio2 from IC4, and all_dmds from IC6a

return range(min(all_dmds[i][t], ratio2(i, t)) + 1) if i < nLeaves

else range(all_dmds[i][t] + 1)

def domain_y(i, t): # {0} from IC1, ratio1 from IC3 and all_dmds from IC6b

return {0} if t == nPeriods - 1 else range(min(all_dmds[i][t + 1], ratio1(i)) + 1)

if i < n - 1 else range(all_dmds[i][t + 1] + 1)

x[i][t] is the amount ordered at node i at period (time) t

x = VarArray(size=[n, nPeriods], dom=domain_x)

y[i][t] is the amount stocked at node i at the end of period t

y = VarArray(size=[n, nPeriods], dom=domain_y)

satisfy(

[y[i][0] == x[i][0] - demands[i][0] for i in range(nLeaves)],

[y[i][t] - Sum(y[i][t - 1], x[i][t]) == -demands[i][t] for i in range(nLeaves)

for t in range(1, nPeriods)],

[y[i][0] == x[i][0] - Sum(x[j][0] for j in children[i]) for i in range(nLeaves, n)],

[y[i][t] == y[i][t - 1] + x[i][t] - Sum(x[j][t] for j in children[i])

for i in range(nLeaves, n) for t in range(1, nPeriods)],

IC2

[(x[i][t] == 0) | disjunction(x[j][t] > 0 for j in children[i])

for i in range(nLeaves, n) for t in range(nPeriods)],

IC5

[(y[i][t - 1] == 0) | (x[i][t] == 0) for i in range(n) for t in range(1, nPeriods)],

tag(redundant-constraints)

[Sum(x[i]) == sumDemands[i] for i in range(n)],

[y[i][t - 1] + Sum(x[i][t:]) == all_dmds[i][t] for i in range(nLeaves)

for t in range(1, nPeriods)]

)

minimize(

Sum(hcosts[i] * y[i][t] for i in range(n) for t in range(nPeriods))

+ Sum(pcosts[i] * (x[i][t] > 0) for i in range(n) for t in range(nPeriods))

)

This problem involves 2 arrays of variables, 2 types of constraints Sum and Intension, and
a complex objective expression. A series of 10 instances has been selected for the competition
(coming from CSPLib). For generating an XCSP3 instance (file), you can execute for example:

python EchelonStock2.py -data=A01.txt -dataparser=EchelonStock_Parser.py

where ’A01.txt’ is a data file and ’EchelonStock Parser.py’ is a parser (i.e., a Python file
allowing us to load data that are not directly given in JSON format). Note that for saving data
in JSON files, you can add the option ’-dataexport’.

https://www.csplib.org/Problems/prob040

2.2. COP 41

2.2.8 Filters

Description. This problem is about optimizing the scheduling of filter operations, commonly
used in High-Level Synthesis. This problem/model has been originally written by Krzysztof
Kuchcinski for the 2010, 2012, 2013 and 2016 Minizinc competitions. See also the models in
JaCop.

Data. As an illustration of data specifying an instance of this problem, we have:

{

"del_add": 1,

"del_mul": 2,

"number_add": 2,

"number_mul": 3,

"last": [40, 41, 42, 43, 44, 45, 46, 47],

"add": [0, 1, 2, 3, 4, ...],

"dependencies": [[8, 16, 17], [8, 19, 20], ...]

}

Model. The PyCSP3 model, in a file ’Filters.py’, used for the competition is:

PyCSP3 Model 27

from pycsp3 import *

d_add, d_mul, n_add, n_mul, last, add, dependencies = data

nOperations = len(dependencies)

d = [d_add if i in add else d_mul for i in range(nOperations)]

mul = [i for i in range(nOperations) if i not in add]

t[i] is the starting time of the ith operation

t = VarArray(size=nOperations, dom=range(101))

r[i] is the (index of the) operator used for the ith operation

r = VarArray(size=nOperations, dom=lambda i: range(1, 1 + (n_add if i in add else n_mul)))

satisfy(

respecting dependencies

[t[i] + d[i] <= t[j] for i in range(nOperations) for j in dependencies[i]],

no overlap concerning add operations

NoOverlap(origins=[(t[i], r[i]) for i in add], lengths=[(d_add, 1) for i in add]),

no overlap concerning mul operations

NoOverlap(origins=[(t[i], r[i]) for i in mul], lengths=[(d_mul, 1) for i in mul])

)

minimize(

minimizing the ending time of last operations

Maximum(t[i] + d[i] for i in last)

)

This problem involves 2 arrays of variables and two types of constraints: NoOverlap and
Intension. A series of 8 instances has been selected for the competition (coming from data gen-
erated by K. Kuchcinski who submitted them to several Minizinc competitions). For generating
an XCSP3 instance (file), you can execute for example:

https://github.com/radsz/jacop/tree/develop/src/main/java/org/jacop/examples/fd/filters

42 CHAPTER 2. PROBLEMS AND MODELS

python Filters.py -data=dct_1_1.dzn -dataparser=Filters_ParserZ.py

where ’dct 1 1.dzn’ is a data file and ’Filters ParserZ.py’ is a parser (i.e., a Python file allowing
us to load data that are not directly given in JSON format). Note that for saving data in JSON
files, you can add the option ’-dataexport’.

2.2.9 Itemset Mining

Description. A model for the following problem has been originally written by Tias Guns
for the 2011, 2012 and 2013 Minizinc competitions. A traditional task in machine learning is
the task of concept learning. Given a dataset of positive and negative examples, the aim is here
to find a formula in disjunctive normal form which characterizes the positive examples as accu-
rately as possible. In this challenge this task is modeled as a discrete constraint optimization
problem; the aim is to find a formula which is as accurate as possible.

The model is based on the link between DNF formulas and pattern sets in the data mining
literature. It represents the formula as a set of itemsets, and imposes constraints on both
the itemsets and the set of itemsets. It is based on the ’Constraint Programming for Itemset
Mining’ framework called CP4IM. See also [7].

Data. As an illustration of data specifying a toy instance of this problem, we have:

{

"nItems": 7,

"pos": [[1, 3], [2, 4, 6]],

"neg": [[0, 2, 5], [1, 2, 6], [2, 3, 5],

"k": 2

}

Model. The PyCSP3 model, in a file ’ItemsetMining.py’, used for the competition is:

PyCSP3 Model 28

from pycsp3 import *

nItems, positiveExamples, negativeExamples, k = data

nPos, nNeg = len(positiveExamples), len(negativeExamples)

precomputing three auxiliary complementary sets

pComp = [[i for i in range(nItems) if i not in t] for t in positiveExamples] # complementary

nComp = [[i for i in range(nItems) if i not in t] for t in negativeExamples]

citm = [[t for t in range(nPos) if i not in positiveExamples[t]] for i in range(nItems)]

if k == 1:

x = VarArray(size=[nItems], dom={0, 1})

tp = VarArray(size=[nPos], dom={0, 1})

tn = VarArray(size=[nNeg], dom={0, 1})

satisfy(

[tp[t] == (Count(x[i] for i in pComp[t]) <= 0) for t in range(nPos)

if len(pComp[t]) > 0],

[tn[t] == (Count(x[i] for i in nComp[t]) <= 0) for t in range(nNeg)

if len(nComp[t]) > 0],

[x[i] == (Count(tp[t] for t in citm[i]) <= 0) for i in range(nItems)

if len(citm[i]) > 0]

)

https://dtai.cs.kuleuven.be/CP4IM

2.2. COP 43

maximize(

Sum(tp) - Sum(tn)

)

else:

x = VarArray(size=[k, nItems], dom={0, 1})

tp = VarArray(size=[k, nPos], dom={0, 1})

tn = VarArray(size=[k, nNeg], dom={0, 1})

jtp = VarArray(size=nPos, dom={0, 1})

jtn = VarArray(size=nNeg, dom={0, 1})

satisfy(

[tp[d, t] == (Count(x[d, i] for i in pComp[t]) <= 0) for d in range(k)

for t in range(nPos) if len(pComp[t]) > 0],

[tn[d, t] == (Count(x[d, i] for i in nComp[t]) <= 0) for d in range(k)

for t in range(nNeg) if len(nComp[t]) > 0],

[x[d, i] == (Count(tp[d, t] for t in citm[i]) <= 0) for d in range(k)

for i in range(nItems) if len(citm[i]) > 0],

[jtp[t] == tp[0][t] | tp[1][t] for t in range(nPos)],

[jtn[t] == tn[0][t] | tn[1][t] for t in range(nNeg)],

tag(symmetry-breaking)

[

LexIncreasing(tp, strict=True),

LexIncreasing(tn, strict=True)

]

)

maximize(

Sum(jtp) - Sum(jtn)

)

This model involves 3 and 5 arrays of variables (depending on the value of k) and several
types of constraints: Count, Intension, LexIncreasing and Sum. A series of 15 instances has
been selected for the competition (coming from data generated by T. Guns who submitted
them to Minizinc competitions). For generating an XCSP3 instance (file), you can execute for
example:

python ItemsetMining.py -data=audiology-k2.dzn -dataparser=ItemsetMining_ParserZ.py

where ’audiology-k2.dzn’ is a data file and ’ItemsetMining ParserZ.py’ is a parser (i.e., a Python
file allowing us to load data that are not directly given in JSON format). Note that for saving
data in JSON files, you can add the option ’-dataexport’.

2.2.10 Multi-Agent Path Finding

Description. A model for the following problem has been originally written by Neng-Fa Zhou
in Picat (and translated to Minizinc by Hakan Kjellerstrand for the 2017 Minizinc competition).

The multi-agent pathfinding (MAPF) problem amounts to finding a plan for agents
to move within a graph from their starting locations to their destinations, such that
no agents collide with each other at any time. MAPF can be solved suboptimally
in polynomial time [14], but finding an optimal solution is NP-hard for common
optimization criteria

See also [1].

44 CHAPTER 2. PROBLEMS AND MODELS

Data. As an illustration of data specifying an instance of this problem, we have:

{

"agents": [[104, 31], [60, 56], [125, 211], ...],

"horizon": 113,

"neighbors": [[0, 15], [1, 17, 2], [2, 18, 1, 3], ...]

}

Model. The PyCSP3 model, in file ’MultiAgentPathFinding.py’, used for the competition is:

PyCSP3 Model 29

from pycsp3 import *

agents, horizon, neighbors, = data

src, dst = zip(*agents)

nAgents, nNodes = len(agents), len(neighbors)

if variant("table"):

table = [(i, v) for i, t in enumerate(neighbors) for v in t]

x[t][a] is the node where is the agent a at time t

x = VarArray(size=[horizon + 1, nAgents], dom=range(nNodes))

e[a] is the time when the agent a arrives at its destination

e = VarArray(size=nAgents, dom=range(horizon + 1))

satisfy(

agents must occupy different node at any time

[AllDifferent(x[t]) for t in range(horizon + 1)],

agents at their destinations stays there

[(x[t][a] != dst[a]) | (x[t + 1][a] == dst[a]) for t in range(horizon)

for a in range(nAgents)],

agents can only move to connected nodes

[(x[t][a], x[t + 1][a]) in table for t in range(horizon) for a in range(nAgents)],

setting agents at their initial positions

[x[0][a] == src[a] for a in range(nAgents)],

setting agents at their final positions

[x[-1][a] == dst[a] for a in range(nAgents)],

computing end times of agents

[(e[a] == t + 1) == ((x[t][a] != dst[a]) & (x[t + 1][a] == dst[a]))

for t in range(horizon) for a in range(nAgents)]

)

if subvariant("mks"):

minimize(

Maximum(e)

)

else:

minimize(

Sum(e) + nAgents

)

This problem involves 2 arrays of variables and 3 types of constraints: AllDifferent,
Extension and Intension. A series of 2× 10 instances has been selected for the competition

2.2. COP 45

(coming from data gently given by N.-F. Zhou). For generating an XCSP3 instance (file), you
can execute for example:

python MultiAgentPathFinding.py -variant=table -data=g16_p10_a05.pi

-dataparser=MultiAgentPathFinding_ParserPicat.py

python MultiAgentPathFinding.py -variant=table-mks -data=g16_p10_a05.pi

-dataparser=MultiAgentPathFinding_ParserPicat.py

where ’g16 p10 a05.pi’ is a data file and ’MultiAgentPathFinding ParserPicat.py’ is a parser
(i.e., a Python file allowing us to load data that are not directly given in JSON format). Note
that for saving data in JSON files, you can add the option ’-dataexport’.

2.2.11 Nurse Rostering

This is a realistic employee shift scheduling Problem (see, for example, [10]).

Description. The description is rather complex. Hence, we refer the reader to:
http://www.schedulingbenchmarks.org/nrp/.

Data. As an illustration of data specifying an instance of this problem, we have:

{

"nDays": 14,

"shifts": [{ "id": "D", "length": 480, "forbiddenFollowingShifts": "null" }],

"staffs": [

{ "id": "A",

"maxShifts": [14],

"minTotalMinutes": 3360,"maxTotalMinutes": 4320,

"minConsecutiveShifts": 2,"maxConsecutiveShifts": 5,

"minConsecutiveDaysOff": 2,

"maxWeekends": 1, "daysOff": [0],

"onRequests": [

{ "day": 2, "shift": "D", "weight": 2 },

{ "day": 3, "shift": "D", "weight": 2}

],

"offRequests": "null"

},

...

],

"covers": [

[{ "requirement": 3, "weightIfUnder": 100, "weightIfOver": 1 }],

[{ "requirement": 5, "weightIfUnder": 100, "weightIfOver": 1 }],

...

]

}

Model. The PyCSP3 model, in a file ’NurseRostering.py’, used for the competition is:

http://www.schedulingbenchmarks.org/nrp/

46 CHAPTER 2. PROBLEMS AND MODELS

PyCSP3 Model 30

from pycsp3 import *

nDays, shifts, staffs, covers = data

if shifts[-1].id != "_off": # if not present, we add first a dummy 'off' shift

shifts.append(shifts[0].__class__("_off", 0, None)) # with a named tuple of the same class

off = len(shifts) - 1 # value for _off

lengths = [shift.length for shift in shifts]

nWeeks, nShifts, nStaffs = nDays // 7, len(shifts), len(staffs)

on_r = [[next((r for r in staff.onRequests if r.day == day), None) if staff.onRequests

else None for day in range(nDays)] for staff in staffs]

off_r = [[next((r for r in staff.offRequests if r.day == day), None) if staff.offRequests

else None for day in range(nDays)] for staff in staffs]

kmin, kmax, kday for minConsecutiveShifts, maxConsecutiveShifts, minConsecutiveDaysOff

_, maxShifts, minTimes, maxTimes, kmin, kmax, kday, maxWeekends, daysOff, _, _ = zip(*staffs)

sp = {shifts[i].id: i for i in range(nShifts)} # position of shifts in the list 'shifts'
table = {(sp[s1.id], sp[s2]) for s1 in shifts if s1.forbiddenFollowingShifts

for s2 in s1.forbiddenFollowingShifts} # rotation

def costs(day, shift):

if shift == off: return [0] * (nStaffs + 1)

r, wu, wo = covers[day][shift]

return [abs(r - i) * (wu if i <= r else wo) for i in range(nStaffs + 1)]

def automaton(k, for_shifts): # automaton_min_consecutive

q = Automaton.q # for building state names

range_off = range(nShifts - 1, nShifts) # a range with only one value (off)

range_others = range(nShifts - 1) # a range with all other values

r1, r2 = (range_off,range_others) if for_shifts else (range_others, range_off)

t = [(q(0), r1, q(1)), (q(0), r2, q(k + 1)), (q(1), r1, q(k + 1))]

t.extend((q(i), r2, q(i + 1)) for i in range(1, k + 1))

t.append((q(k + 1), range(nShifts), q(k + 1)))

return Automaton(start=q(0), final=q(k + 1), transitions=t)

x[d][p] is the shift at day d for person p (value 'off' denotes off)

x = VarArray(size=[nDays, nStaffs], dom=range(nShifts))

nd[p][s] is the number of days such that person p works with shift s

nd = VarArray(size=[nStaffs, nShifts],

dom=lambda p, s: range((nDays if s == off else maxShifts[p][s]) + 1))

np[d][s] is the number of persons working on day d with shift s

np = VarArray(size=[nDays, nShifts], dom=range(nStaffs + 1))

wk[p][w] is 1 iff the week-end w is worked by person p

wk = VarArray(size=[nStaffs, nWeeks], dom={0, 1})

cn[p][d] is the cost of not satisfying the on-request (if it exists) of person p on day d

cn = VarArray(size=[nStaffs, nDays],

dom=lambda p, d: {0, on_r[p][d].weight} if on_r[p][d] else None)

cf[p][d] is the cost of not satisfying the off-request (if it exists) of person p on day d

cf = VarArray(size=[nStaffs, nDays],

dom=lambda p, d: {0, off_r[p][d].weight} if off_r[p][d] else None)

cc[d][s] is the cost of not satisfying cover for shift s on day d

cc = VarArray(size=[nDays, nShifts], dom=lambda d, s: costs(d, s))

2.2. COP 47

satisfy(

days off for staff

[x[d][p] == off for d in range(nDays) for p in range(nStaffs) if d in daysOff[p]],

computing number of days

[Count(x[:, p], value=s) == nd[p][s] for p in range(nStaffs) for s in range(nShifts)],

computing number of persons

[Count(x[d], value=s) == np[d][s] for d in range(nDays) for s in range(nShifts)],

computing worked week-ends

[(imply(x[w * 7 + 5][p] != off, wk[p][w]), imply(x[w * 7 + 6][p] != off, wk[p][w]))

for p in range(nStaffs) for w in range(nWeeks)],

rotation shifts

[Slide((x[i][p], x[i + 1][p]) not in table for i in range(nDays - 1))

for p in range(nStaffs)] if len(table) > 0 else None,

maximum number of worked week-ends

[Sum(wk[p]) <= maxWeekends[p] for p in range(nStaffs)],

minimum and maximum number of total worked minutes

[nd[p] * lengths in range(minTimes[p], maxTimes[p] + 1) for p in range(nStaffs)],

maximum consecutive worked shifts

[Count(x[i:i + kmax[p] + 1, p], value=off) >= 1 for p in range(nStaffs)

for i in range(nDays - kmax[p])],

minimum consecutive worked shifts

[x[i: i + kmin[p] + 1, p] in automaton(kmin[p], True) for p in range(nStaffs)

for i in range(nDays - kmin[p])],

managing off days on schedule ends

[(imply(x[0][p] != off, x[i][p] != off), imply(x[-1][p] != off, x[-1 - i][p] != off))

for p in range(nStaffs) if kmin[p] > 1 for i in range(1, kmin[p])],

minimum consecutive days off

[x[i: i + kday[p] + 1, p] in automaton(kday[p], False) for p in range(nStaffs)

for i in range(nDays - kday[p])],

cost of not satisfying on requests

[iff(x[d][p] == sp[on_r[p][d].shift], cn[p][d] == 0) for p in range(nStaffs)

for d in range(nDays) if on_r[p][d]],

cost of not satisfying off requests

[iff(x[d][p] == sp[off_r[p][d].shift], cf[p][d] != 0) for p in range(nStaffs)

for d in range(nDays) if off_r[p][d]],

cost of under or over covering

[(np[d][s], cc[d][s]) in enumerate(costs(d, s)) for d in range(nDays)

for s in range(nShifts)]

)

minimize(

Sum(cn) + Sum(cf) + Sum(cc)

)

This model involves 7 arrays of variables and 6 types of constraints: Regular, Slide,
Count, Sum, Intension and Extension. A series of 20 instances has been selected from
http://www.schedulingbenchmarks.org. For generating an XCSP3 instance (file), you can exe-
cute for example:

http://www.schedulingbenchmarks.org/

48 CHAPTER 2. PROBLEMS AND MODELS

python NurseRostering.py -data=01 -dataparser=NurseRostering_Parser.py

where ’01’ is a data file and ’NurseRostering Parser.py’ is a parser (i.e., a Python file allowing
us to load data that are not directly given in JSON format). Note that for saving data in JSON
files, you can add the option ’-dataexport’.

Important: The series of instances, used for the 2022 competition comes from the 2018
competition, and compiling instances from the PyCSP3 model above may produce slighlty
different files.

2.2.12 Nursing Workload

This is Problem 069 on CSPLib, called Balanced Nursing Workload Problem.

Description (excerpt from CSPLib). Given a set of patients distributed in a number of
hospital zones and an available nursing staff, one must assign a nurse to each patient in such
a way that the work is distributed evenly between nurses. Each patient is assigned an acuity
level corresponding to the amount of care he requires; the workload of a nurse is defined as the
sum of the acuities of the patients he cares for. A nurse can only work in one zone and there
are retrictions both on the number of patients assigned to a nurse and on the corresponding
workload. We balance the workloads by minimizing their standard deviation.

Data. As an illustration of data specifying an instance of this problem, we have:

{

"nNurses": 11,

"minPatientsPerNurse": 1,

"maxPatientsPerNurse": 3,

"maxWorkloadPerNurse": 105,

"demands": [[59, 57, 50, 44, 42, 40, 39, 39, 33, 33, 32, 27, 26, 22, 20, 17,

11], [49, 47, 39, 39, 38, 30, 30, 28, 27, 15, 14]]

}

Model. The PyCSP3 model, in a file ’NursingWorkload.py’, used for the competition is:

PyCSP3 Model 31

from pycsp3 import *

nNurses, minPatientsPerNurse, maxPatientsPerNurse, maxWorkloadPerNurse, demands = data

patients = [(i, demand) for i, t in enumerate(demands) for demand in t]

nPatients, nZones = len(patients), len(demands)

lb = sum(sorted([dem for i, t in enumerate(demands) for dem in t])[:minPatientsPerNurse])

p[i] is the nurse assigned to the ith patient

p = VarArray(size=nPatients, dom=range(nNurses))

w[k] is the workload of the kth nurse

w = VarArray(size=nNurses, dom=range(lb, maxWorkloadPerNurse + 1))

satisfy(

Cardinality(p, occurrences={k: range(minPatientsPerNurse, maxPatientsPerNurse + 1)

for k in range(nNurses)}),

https://www.csplib.org/Problems/prob069

2.2. COP 49

[p[i] != p[j] for i, j in combinations(range(nPatients), 2)

if patients[i][0] != patients[j][0]],

[w[k] == Sum(c * (p[i] == k) for i, (_, c) in enumerate(patients))

for k in range(nNurses)],

tag(symmetry-breaking)

[p[z] == z for z in range(nZones)],

Increasing(w)

)

minimize(

Sum(w[k] * w[k] for k in range(nNurses))

)

This problem involves 2 arrays of variables and 3 types of constraints: Cardinality, Sum
and Intension. A series of 12 instances has been selected for the competition (coming from
data generated by P. Schaus). For generating an XCSP3 instance (file), you can execute for
example:

python NurseWorkload.py -data=2zones0.txt -dataparser=NursingWorkload_Parser.py

where ’2zones0.txt’ is a data file and ’NursingWorkload ParserZ.py’ is a parser (i.e., a Python
file allowing us to load data that are not directly given in JSON format). Note that for saving
data in JSON files, you can add the option ’-dataexport’.

2.2.13 RCPSP

This is Problem 061 on CSPLib, called Resource-Constrained Project Scheduling Problem
(RCPSP). See also PSPLIB.

Description (excerpt from CSPLib). The resource-constrained project scheduling problem
is a classical well-known problem in operations research. A number of activities are to be
scheduled. Each activity has a duration and cannot be interrupted. There are a set of prece-
dence relations between pairs of activities which state that the second activity must start after
the first has finished. There are a set of renewable resources. Each resource has a maximum
capacity and at any given time slot no more than this amount can be in use. Each activity has
a demand (possibly zero) on each resource. The dummy source and sink activities have zero
demand on all resources. The problem is usually stated as an optimisation problem where the
makespan (i.e. the completion time of the sink activity) is minimized.

Data. As an illustration of data specifying an instance of this problem, we have:

{

"horizon": 158,

"resourceCapacities": [12, 13, 4, 12],

"jobs": [

{ "duration": 0, "successors": [1, 2, 3], "requiredQuantities": [0, 0, 0, 0]

},

{ "duration": 8, "successors": [5, 10, 14], "requiredQuantities": [4, 0, 0, 0]

},

...,

{ "duration": 0, "successors": [], "requiredQuantities": [0, 0, 0, 0] }

]

}

https://www.csplib.org/Problems/prob061
https://www.om-db.wi.tum.de/psplib/

50 CHAPTER 2. PROBLEMS AND MODELS

Model. The PyCSP3 model, in a file ’Rcpsp.py’, used for the competition is:

PyCSP3 Model 32

from pycsp3 import *

horizon, capacities, jobs = data

nJobs = len(jobs)

s[i] is the starting time of the ith job

s = VarArray(size=nJobs, dom=lambda i: {0} if i == 0 else range(horizon))

satisfy(

precedence constraints

[s[i] + duration <= s[j] for i, (duration, successors, _) in enumerate(jobs)

for j in successors],

resource constraints

[Cumulative(tasks=[(s[i], duration, quantities[k]) for i, (duration, _, quantities) in

enumerate(jobs) if quantities[k] > 0]) <= capacity

for k, capacity in enumerate(capacities)]

)

minimize(

s[-1]

)

This model involves 1 array of variables and 2 types of constraints: Cumulative and
Intension. A series of 10 instances has been selected for the competition. For generating
an XCSP3 instance (file), you can execute for example:

python Rcpsp.py -data=j120-01-01.sm -dataparser=Rcpsp_Parser.py

where ’j120-01-01.sm’ is a data file and ’Rcpsp ParserZ.py’ is a parser (i.e., a Python file allowing
us to load data that are not directly given in JSON format). Note that for saving data in JSON
files, you can add the option ’-dataexport’.

2.2.14 RLFAP

When radio communication links are assigned the same or closely related frequencies, there
is a potential for interference. Consider a radio communication network, defined by a set of
radio links. The radio link frequency assignment problem [6] is to assign, from limited spectral
resources, a frequency to each of these links in such a way that all the links may operate together
without noticeable interference. Moreover, the assignment has to comply to certain regulations
and physical constraints of the transmitters. Among all such assignments, one will naturally
prefer those which make good use of the available spectrum, trying to save the spectral resources
for a later extension of the network. As in 2018, do note that we consider here the original
COP instances.

Description The description is rather complex. Hence, we refer the reader to [6].

Data. As an illustration of data specifying an instance of this problem, we have:

{

"domains": {

"1": [16, 30, 44, 58, 72, 86, 100, 114, 128, 142, 156, 254, 268, ...],

"2":[30, 58, 86, 114, 142, 268, 296, 324, 352, 380, 414, 442, 470, ...],

2.2. COP 51

...

},

"vars": [

{ "number": 13, "domain": 1, "value": "null", "mobility": "null" },

{ "number": 14, "domain": 1, "value": "null", "mobility": "null" },

...

],

"ctrs":[

{ "x": 13, "y": 14, "equality": true, "limit": 238, "weight": 0 },

{ "x": 13, "y": 16, "equality": false, "limit": 186, "weight": 0 },

...

],

"interferenceCosts": [0, 1000, 100, 10, 1],

"mobilityCosts": [0, 0, 0, 0, 0]

}

Model. The PyCSP3 model, in a file ’Rlfap.py’, used for the competition is:

PyCSP3 Model 33

from pycsp3 import *

domains, variables, constraints, interferenceCosts, mobilityCosts = data

n = len(variables)

f[i] is the frequency of the ith radio link

f = VarArray(size=n, dom=lambda i: domains[variables[i].domain])

satisfy(

managing pre-assigned frequencies

[f[i] == v for i, (_, v, mob) in enumerate(variables)

if v and not (variant("max") and mob)],

hard constraints on radio-links

[expr(op, abs(f[i] - f[j]), k) for (i, j, op, k, wgt) in constraints

if not (variant("max") and wgt)]

)

if variant("span"):

minimize(

minimizing the largest frequency

Maximum(f)

)

elif variant("card"):

minimize(

minimizing the number of used frequencies

NValues(f)

)

elif variant("max"):

minimize(

minimizing the sum of violation costs

Sum(ift(f[i] == v, 0, mobilityCosts[mob])

for i, (_, v, mob) in enumerate(variables) if v and mob)

+ Sum(ift(expr(op, abs(f[i] - f[j]), k), 0, interferenceCosts[wgt])

for (i, j, op, k, wgt) in constraints if wgt)

)

52 CHAPTER 2. PROBLEMS AND MODELS

The model involves 1 array of variables, many constraints Intension and an objective
that varies according to the chosen variant. Note that expr allows us to build an expression
(constraint) with an operator given as first parameter (possibly, a string). The complete series
of 25 instances, 11 CELAR (scen) and 14 GRAPH, has been selected for the competition. For
generating an XCSP3 instance (file), you can execute for example:

python Rlfap.py -variant=span -data=Rlfap-span-graph-03.json

python Rlfap.py -variant=card -data=Rlfap-card-graph-01.json

python Rlfap.py -variant=max -data=Rlfap-max-graph-05.json

2.2.15 Spot5

Description. A model for the following problem has been originally written by Simon de
Givry for the 2014 and 2015 Minizinc competitions. The problem is roughly described (by
Simon) as follows:

• given a set S of photographs which can be taken the next day from at least one of the
three instruments, w.r.t. the satellite trajectory;

• given, for each photograph, a weight expressing its importance;

• given a set of imperative constraints: non overlapping and minimal transition time be-
tween two successive photographs on the sameinstrument, limitation on the instantaneous
data flow through the satellite telemetry and on the recording capacity on board;

find an admissible subset S′ of S (imperative constraints met) which maximizes the sum of the
weights of the photographs in S’. See also [2].

Data. As an illustration, the structure of the data specifying an instance of this problem is:

{

"domains": ...,

"costs": ...,

"f2x": ...,

"f2y": ...,

"nTuples2": ...,

"offsets2": ...,

"t2": ...,

"f3x": ...,

"f3y": ...,

"f3z": ...,

"nTuples3": ...,

"offsets3": ...,

"t3": ...

}

Model. The PyCSP3 model, in a file ’Spot5.py’, used for the competition is:

2.2. COP 53

PyCSP3 Model 34

from pycsp3 import *

domains, costs, f2x, f2y, nTuples2, offsets2, t2, \

f3x, f3y, f3z, nTuples3, offsets3, t3 = data

n = len(domains)

x[i] is the value for the ith variable

x = VarArray(size=n, dom=lambda i: domains[i])

satisfy(

binary constraints

[(x[f2x[j]], x[f2y[j]]) in [(t2[2 * offsets2[j] + k * 2], t2[2 * offsets2[j] + k * 2 + 1])

for k in range(nTuples2[j])] for j in range(len(f2x))],

ternary constraints

[(x[f3x[j]], x[f3y[j]], x[f3z[j]]) in [

(t3[3 * offsets3[j] + k * 3], t3[3 * offsets3[j] + k * 3 + 1], t3[3 * offsets3[j] + k

* 3 + 2]) for k in range(nTuples3[j])] for j in range(len(f3x))]

)

minimize(

Sum(costs[i] * (x[i] == 0) for i in range(n))

)

This problem involves 1 array of variables and 1 type of constraints: Extension. A series
of 10 instances has been selected for the competition (coming from data generated by S. de
Givry for Minizinc competitions). For generating an XCSP3 instance (file), you can execute for
example:

python Spot5.py -data=0412.json

2.2.16 TAL

TAL is a problem of natural language processing. The series of instances, used for the 2022
competition comes from the 2018 competition. The model has not been converted in PyCSP3.

2.2.17 Triangular

Description. This problem, taken from Daily Telegraph and Sunday Times, is to find, for
an equilateral triangular grid of size n (length of a side), the maximum number of nodes that
can be selected without having all selected corners of any equilateral triangle of any size or
orientation. It was also used in Minizinc Competitions (2015 and 2019).

Data. Only one integer is required to specify a specific instance. Values of n used for the
instances in the competition are:

10, 15, 20, 22, 25, 28, 30, 32, 35, 38

Model. The PyCSP3 model, in a file ’Triangular.py’, used for the competition is:

54 CHAPTER 2. PROBLEMS AND MODELS

PyCSP3 Model 35

from pycsp3 import *

n = data

x[i,j] is 1 iff the jth node in the ith row is selected

x = VarArray(size=[n, n], dom=lambda i, j: {0, 1} if i >= j else None)

satisfy(

Sum(x[i + m][j], x[i + k][j + m], x[i + k - m][j + k - m]) <= 2 for i in range(n)

for j in range(i + 1) for k in range(1, n - i) for m in range(k)

)

maximize(

Sum(x)

)

This problem involves 1 array of variables and 1 type of constraints: Sum. A series of 10
instances has been selected for the competition. For generating an XCSP3 instance (file), you
can execute for example:

python Triangular.py -data=25

2.2.18 Warehouse

This is Problem 034 on CSPLib, called Warehouse Location Problem.

Description (from CSPLib). In the Warehouse Location problem (WLP), a company con-
siders opening warehouses at some candidate locations in order to supply its existing stores.
Each possible warehouse has the same maintenance cost, and a capacity designating the max-
imum number of stores that it can supply. Each store must be supplied by exactly one open
warehouse. The supply cost to a store depends on the warehouse. The objective is to determine
which warehouses to open, and which of these warehouses should supply the various stores, such
that the sum of the maintenance and supply costs is minimized.

Data. As an illustration of data specifying an instance of this problem, we have:

{

"fixedCost": 30,

"warehouseCapacities": [1,4,2,1,3],

"storeSupplyCosts": [

[20,24,11,25,30],[28,27,82,83,74],[74,97,71,96,70],[2,55,73,69,61],

[46,96,59,83,4],[42,22,29,67,59],[1,5,73,59,56],[10,73,13,43,96],

[93,35,63,85,46],[47,65,55,71,95]

]

}

Model. The PyCSP3 model, in a file ’Warehouse.py’, used for the competition is:

https://www.csplib.org/Problems/prob034

2.2. COP 55

PyCSP3 Model 36

from pycsp3 import *

cost, capacities, costs = data # cost is the fixed cost when opening a warehouse

nWarehouses, nStores = len(capacities), len(costs)

w[i] is the warehouse supplying the ith store

w = VarArray(size=nStores, dom=range(nWarehouses))

o[j] is 1 if the jth warehouse is open

o = VarArray(size=nWarehouses, dom={0, 1})

c[i] is the cost of supplying the ith store

c = VarArray(size=nStores, dom=lambda i: costs[i])

satisfy(

capacities of warehouses must not be exceeded

Count(w, value=j) <= capacities[j] for j in range(nWarehouses)

the warehouse supplier of the ith store must be open

[o[w[i]] == 1 for i in range(nStores)],

computing the cost of supplying the ith store

[costs[i][w[i]] == c[i] for i in range(nStores)]

)

minimize(

minimizing the overall cost

Sum(c) + Sum(o) * cost

)

This model involves 3 arrays of variables and 2 type of constraints: Count and Element. A
series of 9 instances has been selected for the competition. For generating an XCSP3 instance
(file), you can execute for example:

python Warehouse.py -dataparser=Warehouse_Random.py 40 80 100 10 1000 0

where ’Warehouse Random.py’ is a generator of instances, using specified values. Note that for
saving data in JSON files, you can add the option ’-dataexport’.

2.2.19 War or Peace

Description. Problem based on information from hakank.org. There are n countries. Each
pair of two countries is either at war or has a peace treaty. Each pair of two countries that has
a common enemy has a peace treaty. What is the minimum number of peace treaties?

Data. Only one integer is required to specify a specific instance. Values of n used for the
instances in the competition are:

• 8, 9, 10, 12, 14 for main variant

• 8, 9, 10, 12, 14 for variant ’or’

Model. The PyCSP3 model, in a file ’WarOrPeace.py’, used for the competition is:

http://www.hakank.org/

56 CHAPTER 2. PROBLEMS AND MODELS

PyCSP3 Model 37

from pycsp3 import *

n = data

WAR, PEACE = 0, 1

x[i][j] is 1 iff countries i and j have a peace treaty

x = VarArray(size=[n, n], dom=lambda i, j: {WAR, PEACE} if i < j else None)

if not variant():

satisfy(

(x[i][j] == PEACE)

| (Sum((x[min(i, k)][max(i, k)] == WAR) & (x[min(j, k)][max(j, k)] == WAR)

for k in range(n) if different_values(i, j, k)) == 0)

for i, j in combinations(range(n), 2)

)

elif variant("or"):

satisfy(

(x[i][j] == PEACE)

| ((x[i][j] == WAR) & conjunction((x[k][i] == PEACE) | (x[k][j] == PEACE)

for k in range(i)))

for i, j in combinations(range(1, n), 2)

)

minimize(

minimizing the number of peace treaties

Sum(x)

)

This problem involves 1 array of variables and complex forms of constraints. A series of 10
instances has been selected for the competition. For generating an XCSP3 instance (file), you
can execute for example:

python WarOrPeace.py -data=10

python WarOrPeace.py -variant=or -data=10

Chapter 3

Solvers

In this chapter, we introduce the solvers and teams having participated to the XCSP3 Compe-
tition 2022.

• ACE (Christophe Lecoutre)

• ACE ABD (extension of ACE by Thibault Falque and Hughes Wattez)

• BTD, miniBTD (Mohamed Sami Cherif, Djamal Habet, Philippe Jégou, Hélène Kanso,
Cyril Terrioux)

• Choco (Charles Prud’homme and Jean-Guillaume Fages)

• CoSoCo (Gilles Audemard)

• Exchequer (Martin Mariusz Lester)

• Fun-sCOP (Takehide Soh, Daniel Le Berre, Hidetomo Nabeshima, Mutsunori Banbara,
Naoyuki Tamura)

• Glasgow (Ciaran McCreesh)

• MiniCPBP (Gilles Pesant and Auguste Burlats)

• Mistral (Emmanuel Hebrard and Mohamed Siala)

• Nacre (Gaël Glorian)

• Picat (Neng-Fa Zhou)

• RBO, miniRBO (Mohamed Sami Cherif, Djamal Habet, Cyril Terrioux)

• Sat4j-CSP-PB (extension of Sat4j by Thibault Falque and Romain Wallon)

• toulbar2 (David Allouche et al.)

57

ACE

A Generic Constraint Solver

Christophe Lecoutre
CRIL, University of Artois & CNRS

Lens, France
lecoutre@cril.fr

Version 2.0.1 – May 23, 2022

ACE (AbsCon Essence) is an open-source constraint solver, developed in Java. ACE focuses on:

• integer variables, including 0/1 (Boolean) variables,

• state-of-the-art table constraints, including ordinary, starred, and hybrid table constraints,

• popular global constraints (AllDifferent, Count, Element, Cardinality, Cumulative, etc.),

• search heuristics, as e.g., wdeg [2, 9], last-conflict [6], BIVS [5], solution-saving [8],

• mono-criterion optimization

ACE is derived from the constraint solver AbsCon that has been used as a research platform in
our team at CRIL during many years. Many ideas and algorithms have been discarded from AbsCon,
so as to get a constraint solver of reasonable size and understanding.

Important: ACE is not an official competitor for the 2022 XCSP3 competition because I con-
ducted the selection of instances. Note also that ACE is run with its default behaviour without any
mechanism that could have been used to improve its performances (e.g., local search in a preprocessing
step, use of several heuristics to improve diversification of search, etc.).

58

With the right classpath (after having cloned the code from Github), you can run the solver on
any XCSP3 [4, 1, 3] instance (file) by executing:

java ace <xcsp3_file> [options]

with:

• <xcsp3 file>: an XCSP3 file representing a CSP or COP instance

• [options]: possible options to be used when running the solver

Of course, for generating XCSP3 instances, just write and compile models with the Python library
PyCSP3 [7]. See http://pycsp.org/

Licence. ACE is licensed under the MIT License

Code. ACE code is available

• on Github: https://github.com/xcsp3team/ace

Acknowledgements

This work has been supported by the project CPER DATA from the “Hauts-de-France” Region.

References

[1] G. Audemard, F. Boussemart, C. Lecoutre, C. Piette, and O. Roussel. XCSP3 and its ecosystem.
Constraints, 25(1-2):47–69, February 2020. Springer.

[2] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting
constraints. In Proceedings of ECAI’04, pages 146–150, 2004.

[3] F. Boussemart, C. Lecoutre, G. Audemard, and C. Piette. XCSP3: An Integrated Format
for Benchmarking Combinatorial Constrained Problems. Technical Report. v3.0.7 on CoRR,
arXiv:1611.03398, 2016–2021. 242 pages.

[4] F. Boussemart, C. Lecoutre, G. Audemard, and C. Piette. XCSP3-core: A Format for Rep-
resenting Constraint Satisfaction/Optimization Problems. Technical Report. v3.0.7 on CoRR,
arXiv:2009.00514, 2020–2021. 106 pages.

[5] J.-G. Fages and C. Prud’homme. Making the first solution good! In Proceedings of ICTAI’17,
pages 1073–1077, 2017.

[6] C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Reasonning from last conflict(s) in constraint
programming. Artificial Intelligence, 173(18):1592–1614, 2009.

[7] C. Lecoutre and N. Szczepanski. PyCSP3: Modeling Combinatorial Constrained Problems in
Python. Technical Report. v2.0 on CoRR, arXiv:2009.00326, 2020–2021. 144 pages.

[8] J. Vion and S. Piechowiak. Une simple heuristique pour rapprocher DFS et LNS pour les COP.
In Proceedings of JFPC’17, pages 39–45, 2017.

[9] H. Wattez, C. Lecoutre, A. Paparrizou, and S. Tabary. Refining constraint weighting. In Proceed-
ings of ICTAI’19, pages 71–77, 2019.

59

ACE ABD

An unofficial ACE extension with Agressive Bound Descent

Thibault Falque1,2, Hugues Wattez3
1Exakis Nelite

2CRIL, University of Artois & CNRS
3LIX CNRS, École Polytechnique, Institut Polytechnique de Paris

Version 2.0.1 – May 23, 2022

ACE ABD (AbsCon Essence with Agressive Bound Descent) is a constraint solver, developed in
Java. ACE ABD focuses on:

• integer variables, including 0/1 (Boolean) variables,

• state-of-the-art table constraints, including ordinary, starred, and hybrid table constraints,

• popular global constraints (AllDifferent, Count, Element, Cardinality, Cumulative, etc.),

• search heuristics, as e.g., wdeg [1, 8], last-conflict [5], BIVS [3], solution-saving [7],

• mono-criterion optimization

• aggressive bound descent [4]

ACE ABD is derived from the open-source constraint solver ACE. This is an unofficial version
of ACE composed, in particular, of an aggressive bound descent policy [4]. With the ABD policy
enabled, new bounds are modified exponentially as long as the searching algorithm is successful (into

60

a run): for a sequence of bounds 〈B0, B1, . . .〉, the solver forces a minimum gap between two successive
bounds: Bi+1 − Bi ≥ 2i. These gaps follow the exponential sequence: 1, 2, 4, 8, . . . (as indicated in
the acronym where each letter is identified by its rank: A1B2D4).

Important: ACE ABD is not an official competitor for the 2022 XCSP3 competition because the
original solver has been used to conduct the selection of instances.

You can run the solver on any XCSP3 [2, 6] instance (file) by executing:

java -jar ACE-ABD.jar <xcsp3_file> [options]

with:

• <xcsp3 file>: an XCSP3 file representing a COP instance

• [options]: possible options to be used when running the solver

Licence. ACE is licensed under the MIT License

Code. ACE (not ACE ABD) code is available

• on Github: https://github.com/xcsp3team/ace

Acknowledgements

This work has been supported by the project CPER DATA from the “Hauts-de-France” Region.

References

[1] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting
constraints. In Proceedings of ECAI’04, pages 146–150, 2004.

[2] F. Boussemart, C. Lecoutre, G. Audemard, and C. Piette. XCSP3: an integrated format for
benchmarking combinatorial constrained problems. CoRR, abs/1611.03398, 2016.

[3] J.G. Fages and C. Prud’Homme. Making the first solution good! In ICTAI 2017 : 29th IEEE In-
ternational Conference on Tools with Artificial Intelligence, Boston, MA, United States, November
2017.

[4] T. Falque, C. Lecoutre, B. Mazure, and H. Wattez. Descente Agressive de Borne en Optimi-
sation sous Contraintes. In 16èmes Journées Francophones de Programmation par Contraintes
(JPFC’21), Nice, France, June 2021.

[5] C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Reasonning from last conflict(s) in constraint
programming. Artificial Intelligence, 173(18):1592–1614, 2009.

[6] C. Lecoutre and N. Szczepanski. PyCSP3: Modeling combinatorial constrained problems in
Python. Technical report, CRIL, 2020. Available from https://github.com/xcsp3team/pycsp3.

[7] J. Vion and S. Piechowiak. Une simple heuristique pour rapprocher DFS et LNS pour les COP.
In Proceedings of JFPC’17, pages 39–45, 2017.

[8] H. Wattez, C. Lecoutre, A. Paparrizou, and S. Tabary. Refining constraint weighting. In Proceed-
ings of ICTAI’19, pages 71–77, 2019.

61

BTD and miniBTD

A Tree-decomposition based Approach

Mohamed Sami Cherif1 Djamal Habet1 Philippe Jégou1

Hélène Kanso2 Cyril Terrioux1

1 Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
{firstname.name}@univ-amu.fr

2 Effat University, Jeddah, Saudi Arabia
hkanso@effatuniversity.edu.sa

(mini)BTD (Backtracking on Tree-Decomposition) is an open-source constraint solver which ex-
ploits the structure of CSP instances thanks to the notion of tree-decomposition [5]. It is written in
C++ and implements the algorithm BTD-MAC+RST+Merge [3].

For the competition, we have made the following choices:

• The variable heuristic relies on Last Conflict [4] combined with a multi-armed bandit with 9
arms [1]. The i-th arm is based on CHS (for Conflict History Search [2]) with α = 0.1 ∗ i and
δ = 10−4. Note that the variable heuristic is only exploited for ordering the variables inside a
cluster.

• lexico is used as value ordering heuristic.

• Generalized arc-consistency is enforced by a propagation-based system exploiting events.

• (mini)BTD relies on restarts performed according to a geometric restart policy based on the
number of conflicts with an initial cutoff set to 50 and an increasing factor set to 1.05,

• The tree-decomposition is computed thanks to the heuristic H5-TD-WT [3].

• The first root cluster is the cluster having the maximum ratio number of constraints to its size
minus one and then, at each restart, the selected root cluster is one which maximizes the sum
of the weights of the constraints whose scope intersects the cluster.

(mini)BTD is able to handle all the constraints used in the competition.

Licence. (mini)BTD is licensed under the MIT License.

Code. The source code is available on Github: https://github.com/Terrioux/BTD-RBO.

Command line. (mini)BTD can be launched thanks to the following command line:

SOLVER TIMELIMIT BENCHNAME

where:

• SOLVER is the path to the executable BTD or miniBTD,

• TIMELIMIT is the number of seconds allowed for solving the instance,

• BENCHNAME is the name of the XML file representing the instance we want to solve.

62

References

[1] Mohamed Sami Cherif, Djamal Habet, and Cyril Terrioux. On the Refinement of Conflict History
Search Through Multi-Armed Bandit. In Proceedings of 32nd IEEE International Conference on
Tools with Artificial Intelligence (ICTAI), pages 264–271. IEEE, 2020.

[2] Djamal Habet and Cyril Terrioux. Conflict History Based Heuristic for Constraint Satisfaction
Problem Solving. J. Heuristics, 27(6):951–990, 2021.

[3] P. Jégou, H. Kanso, and C. Terrioux. Towards a Dynamic Decomposition of CSPs with Separators
of Bounded Size. In Proceedings of the 22nd International Conference on Principles and Practice
of Constraint Programming (CP), pages 298–315, 2016.

[4] Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal. Reasoning from last
conflict(s) in constraint programming. Artif. Intell., 173(18):1592–1614, 2009.

[5] N. Robertson and P.D. Seymour. Graph minors II: Algorithmic aspects of treewidth. Algorithms,
7:309–322, 1986.

63

Choco solver

a free open-source Java library for CP

Charles Prud’homme
LS2N, IMT-Atlantique,

Nantes, France,
charles.prudhomme@imt-atlantique.fr

Version 4.10.9 – Aug., 2022

Choco solver already has a long history : the first line of code was written
in 1999 [11]. Since then, the code has been frequently re-engineered and re-
leased, up to version 4.0.8, the last current released [12]. It contains numerous
variables, many (global) constraints and search procedures, to provide wide
modeling perspectives.

Choco solver is used by the academy for teaching and research and by the
industry to solve real-world problems, such as program verification, data center
management, timetabling, scheduling and routing.

Several useful extra features are also available such as an extension that deals
with graph variables, parsers to XCSP3 and FlatZinc or a minimalist profiler.

1 A Modeling API

Choco solver comes with the commonly used types of variables: integer vari-

64

ables with either bounded domain or enumerated one, Boolean variables, set
variables and graph variables. Views [13] but also arithmetical, relational and
logical expressions are supported.

Up to 100 constraints –and more than 150 propagators– are provided : from
classic ones, such as arithmetical constraints, to must-have global constraints,
such as allDifferent or cumulative, and include less common even though
useful ones, such as tree. One can pick some existing propagators to compose
a new constraint or create its own one in a straightforward way by implementing
a filtering algorithm and a satisfaction checker.

The library supports natively real variables and constraints also, and relies
on Ibex [3] to solve the continuous part of the problem [4].

2 Resolution Toolbox

Choco solver has been carefully designed to offer wide range of resolution con-
figurations and good resolution performances. Backtrackable primitives and
structures are based on trailing. The propagation engine deals with seven pri-
ority levels and manage either fine or coarse grain events which enables to get
efficient incremental constraint propagators.

The search algorithm relies on three components Propagate, Learn and Move
depicted in [8]. Such a generic search algorithm is then instantiated to DFS,
LNS [14], LDS [7], DDS [15] or HBFS [1].

The search process can also be greatly improved by various built-in search
strategies such as Dom/WDeg [2] and CACD variant [16], ABS [10], Failure-
based searches [9], BIVS [5], first-fail [6], etc., and by creating a problem-adapted
search strategy.

One can solve a problem in many ways : checking satisfaction, finding one
or all solutions, optimizing one or more objectives and solving on one or more
thread, or simply propagating. The search process itself is observable and ex-
tensible.

3 The code and the dev team

Structurally, Choco solver is made of 573 Java classes which represents roughly
53k source code lines. The source code is hosted on GitHub under a BSD 4-
clause licence. The project is mainly developed and maintained by Charles
Prud’homme and Jean-Guillaume Fages, they can count on attentive contribu-
tors. Tutorials, Javadoc and a user guide can be referred to, as long as a Google
group.

References

[1] David Allouche, Simon De Givry, Georgios KATSIRELOS, Thomas Schiex,
and Matthias Zytnicki. Anytime hybrid best-first search with tree decom-

65

position for weighted CSP. In CP 2015 - 21st International Conference
on Principles and Practice of Constraint Programming, page 17 p., Cork,
Ireland, August 2015.

[2] Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais.
Boosting systematic search by weighting constraints. In Proceedings of the
16th Eureopean Conference on Artificial Intelligence, ECAI’2004, including
Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain,
August 22-27, 2004, pages 146–150, 2004.

[3] Gilles Chabert. Ibex 2.2.0, June 2017.

[4] Jean-Guillaume Fages, Gilles Chabert, and Charles Prud’Homme. Com-
bining finite and continuous solvers Towards a simpler solver maintenance.
In The 19th International Conference on Principles and Practice of Con-
straint Programming, page TRICS’13 Workshop: Techniques foR Imple-
menting Constraint programming Systems, Uppsala, Sweden, September
2013.

[5] Jean-Guillaume Fages and Charles Prud’Homme. Making the first solution
good! In ICTAI 2017 29th IEEE International Conference on Tools with
Artificial Intelligence, Boston, MA, United States, November 2017.

[6] Robert M. Haralick and Gordon L. Elliott. Increasing tree search efficiency
for constraint satisfaction problems. In Proceedings of the 6th International
Joint Conference on Artificial Intelligence - Volume 1, IJCAI’79, pages
356–364, San Francisco, CA, USA, 1979. Morgan Kaufmann Publishers
Inc.

[7] William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search.
In Proceedings of the 14th International Joint Conference on Artificial In-
telligence - Volume 1, IJCAI’95, pages 607–613, San Francisco, CA, USA,
1995. Morgan Kaufmann Publishers Inc.

[8] Narendra Jussien and Olivier Lhomme. Unifying search algorithms for csp.
Research report RR0203, EMN, 2002.

[9] Hongbo Li, Minghao Yin, and Zhanshan Li. Failure based variable order-
ing heuristics for solving csps (short paper). In Laurent D. Michel, editor,
27th International Conference on Principles and Practice of Constraint
Programming, CP 2021, Montpellier, France (Virtual Conference), Octo-
ber 25-29, 2021, volume 210 of LIPIcs, pages 9:1–9:10. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

[10] Laurent Michel and Pascal Van Hentenryck. Activity-based search for
black-box constraint programming solvers. In Nicolas Beldiceanu, Naren-
dra Jussien, and Éric Pinson, editors, Integration of AI and OR Techniques
in Contraint Programming for Combinatorial Optimzation Problems, pages
228–243, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

66

[11] Frano̧is Laburthe. Choco: implementing a cp kernel. In Proceed-
ings of Techniques foR Implementing Constraint programming Systems
(TRICS’00), pages 118–133, 2000.

[12] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco
Documentation. TASC, LS2N CNRS UMR 6241, COSLING S.A.S., 2017.

[13] Christian Schulte and Guido Tack. Views and iterators for generic con-
straint implementations. In Peter van Beek, editor, Principles and Practice
of Constraint Programming - CP 2005, 11th International Conference, CP
2005, Sitges, Spain, October 1-5, 2005, Proceedings, volume 3709 of Lecture
Notes in Computer Science, pages 817–821. Springer, 2005.

[14] Paul Shaw. Using constraint programming and local search methods to
solve vehicle routing problems. In Michael J. Maher and Jean-Francois
Puget, editors, Principles and Practice of Constraint Programming - CP98,
4th International Conference, Pisa, Italy, October 26-30, 1998, Proceed-
ings, volume 1520 of Lecture Notes in Computer Science, pages 417–431.
Springer, 1998.

[15] Toby Walsh. Depth-bounded discrepancy search. In In Proceedings of
IJCAI-97, pages 1388–1393, 1997.

[16] Hugues Wattez, Christophe Lecoutre, Anastasia Paparrizou, and Sébastien
Tabary. Refining constraint weighting. In 31st IEEE International Con-
ference on Tools with Artificial Intelligence, ICTAI 2019, Portland, OR,
USA, November 4-6, 2019, pages 71–77. IEEE, 2019.

67

CoSoCo 2.1
XCSP3 Competition 2022

Gilles Audemard

CRIL-CNRS, UMR 8188
Université d’Artois, F-62307 Lens France

audemard@cril.fr

CoSoCo is a constraint solver written in C++.The main goal is to build a
simple, but efficient constraint solver. Indeed, the main part of the solver contains
less than 3,500 lines of code (including headers). CoSoCo will be available on
github in september 2022. CoSoCo recognizes XCSP3 [2] by using the C++
parser that can be downloaded at https://github.com/xcsp3team/XCSP3-CPP-
Parser. It can deal with all XCSP3 Core constraints. The part related to all
constraint propagators contains around 5,500 lines of codes (including headers).
This is the fourth participation of CoSoCo to XCSP competitions.

CoSoCo performs backtrack search, enforcing (generalized) arc consistency
at each node (when possible). The main components are :

– dom/wdeg [1] as variable ordering heuristic;
– lexico as value ordering heuristic;
– lc(1), last-conflict reasoning with a collecting parameter k set to 1, as de-

scribed in [4];
– a geometric restart policiy;
– a variable-oriented propagation scheme [5], where a queue Q records all vari-

ables with recently reduced domains (see Chapter 4 in [3]).
– The solution saving technque [6].

Acknowledgements

This work would not have taken place without Christophe Lecoutre. I would like
to thank him very warmly for his support.

References

1. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by
weighting constraints. In Proceedings of ECAI’04, pages 146–150, 2004.

2. F. Boussemart, C. Lecoutre, and C. Piette. XCSP3: an integrated format for bench-
marking combinatorial constrained problems. CoRR, abs/1611.03398, 2016.

3. C. Lecoutre. Constraint networks: techniques and algorithms. ISTE/Wiley, 2009.
4. C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Reasonning from last conflict(s) in

constraint programming. Artificial Intelligence, 173(18):1592–1614, 2009.
5. J.J. McGregor. Relational consistency algorithms and their application in finding

subgraph and graph isomorphisms. Information Sciences, 19:229–250, 1979.
6. Julien Vion and Sylvain Piechowiak. Une simple heuristique pour rapprocher dfs et

lns pour les cop. In JFPC, 2017.

68

Exchequer

Solving XCSP3 problems using xcsp2c and CBMC

Martin Mariusz Lester
Department of Computer Science

University of Reading
United Kingdom

m.lester@reading.ac.uk

Version 1.0.1 – May 27, 2022

Exchequer is a solver for constraint satisfaction problems expressed in the XCSP3-Core format.
This version is submitted to the Mini Solver track of the XCSP3 Competition 2022. Thus only a
subset of XCSP3-Core is supported.

The solver works by translating an XCSP3 instance into a C program, which violates an assertion
only if the values of the variables in the program give a solution to the instance. Then it uses the
bounded model-checker CBMC [2] to attempt to verify absence of assertion violations. If CBMC finds
an assertion violation, it reports back a counterexample trace, which Exchequer turns into an instance
solution. If it finds no assertion violation, Exchequer reports that the instance is unsatisfiable.

CBMC itself works by translating a C program into a giant SAT instance, which it solves using a
SAT solver. For the competition, we have used a version of CBMC built with the more modern SAT
solver CaDiCaL [1] instead of the default MiniSat. This is slower on some easy problems, but tends
to be faster on harder ones.

It is unlikely that Exchequer’s approach will ever be better than a direct encoding in SAT. It was
written primarily to demonstrate that its approach is feasible, and to see how much worse it is.

Exchequer’s translation is quite naive. It can easily generate very large C files, for example, if the
instance contains a large extension constraint that is used as a template. In this case, even if the
instance is solved, most of the time is spent by CBMC generating the SAT instance, not running the
SAT solver.

Encoding example. Consider the following XCSP3 example:

<instance format="XCSP3" type="CSP">

<variables>

<var id="x"> 1..10 </var>

<var id="y"> 1..100 </var>

</variables>

<constraints>

<intension>

eq(y,mul(x,x))

</intension>

</constraints>

</instance>

Exchequer produces the following C encoding (with boilerplate header code omitted):

69

int main() {

int32_t x;

__CPROVER_assume(((x >= 1) && (x <= 10)));

__CPROVER_printf("XCSP2C SOLUTION: x = %d", x);

int32_t y;

__CPROVER_assume(((y >= 1) && (y <= 100)));

__CPROVER_printf("XCSP2C SOLUTION: y = %d", y);

__CPROVER_assume((y == (x * x)));

#ifndef TARGET

assert(0);

#endif

}

Implementation details. Exchequer is implemented as two Perl scripts: xcsp2c.pl performs the
translation, while exchequer.pl is a wrapper that calls xcsp2c.pl and CBMC. Exchequer also uses
XCSP3 Tools to validate solutions before returning them.

For constraint optimisation (COP) problems, Exchequer simply calls CBMC repeatedly, trying to
find a solution incrementally better than the previous one each time. When a better solution cannot
be found, we know this is the optimum. The actual value of the objective for each solution is calculated
using XCSP3 Tools.

Usage. Download from https://gitlab.act.reading.ac.uk/ta918887/exchequer and run:

perl DIR/tool/exchequer.pl --tmpdir=TMPDIR BENCHNAME

where:

• DIR is the extracted release archive directory;

• BENCHNAME is the XML file encoding the XCSP3 instance;

• TMPDIR is the optional temporary directory to use.

If no temporary directory is given, Exchequer will use the directory containing the instance. In any
case, it will write the following files:

• a .c file encoding the instance;

• a .log file recording the output from CBMC;

• a .sol.xml file containing the solution.

Licence. Exchequer, CaDiCaL and XCSP3 Tools are distributed under the MIT License. CBMC is
distributed under a BSD-style 4-clause licence.

References

[1] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Proc. of SAT Com-
petition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department of Computer
Science Report Series B, pages 51–53. University of Helsinki, 2020. https://helda.helsinki.

fi/handle/10138/335114.

[2] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C programs. In
TACAS 2004, volume 2988 of Lecture Notes in Computer Science, pages 168–176. Springer, 2004.
https://doi.org/10.1007/978-3-540-24730-2_15.

70

Fun-sCOP

XCSP3 Competition 2022

Takehide Soh1, Daniel Le Berre2, Hidetomo Nabeshima3, Mutsunori Banbara4, and
Naoyuki Tamura1

1 Kobe University, Japan, {soh@lion.,tamura@}kobe-u.ac.jp
2 CRIL-CNRS, Université d’Artois, France, leberre@cril.fr

3 University of Yamanashi, Japan, nabesima@yamanashi.ac.jp
4 Nagoya University, Japan, banbara@nagoya-u.jp

1 Overview

Fun-sCOP is a SAT-based constraint programming system written in Scala, which
aims to be a re-implementation of Sugar [5] written in Java. Compared to the previ-
ous version named scop, Fun-sCOP equips the hybrid encoding integrating the order
and log encodings [3]. The following figure shows the framework of Fun-sCOP. We
explain each part of this framework in the remaining of this paper.

Normalized
CSP

XCSP3
File

CNF
Formulas

Solution Model

Parsing
and

Normalizations

Propagations
and

Encoding SAT Solvers

Decoding

2 Parsing and Normalizations

Parsing is done by using the official tool XCSP3-Java-Tools 5. Fun-sCOP accepts
constraints in the XCSP3-core language6.

Normalizations are executed as follows:

– Global Constraints are decomposed into intensional constraints. We use extra pi-
geon hole constraints [5] for alldifferent constraints.

– Extensional constraints are translated into intensional constraints by using a vari-
ant of multi-valued decision diagrams. This is a difference to ones in Sugar.

– Intensional Constraints are normalized to be in the form of a conjunction of dis-
junctions of linear comparisons

∑
i aixi ≥ k where ai’s are integer coefficients,

xi’s are integer variables and k is an integer constant. Tseitin transformation is used
to avoid the combinatorial explosion.

5 https://github.com/xcsp3team/XCSP3-Java-Tools
6 http://www.xcsp.org/specifications

71

3 Propagations and Encoding Methods

Constraint propagations are executed to the normalized CSP (clausal CSP, i.e., in the
form of CNF over linear comparisons

∑
i aixi ≥ k) to remove redundant values, vari-

ables, and linear comparisons. It is done by using an AC3 like algorithm.
Encoding methods are as follows:

– Order Encoding [7, 6] is an encoding method using propositional variables px≥d’s
meaning x ≥ d for each domain value d of each integer variable x. To encode linear
comparisons, Algorithm 1 of the literature [6] is used in Fun-sCOP.

– Hybrid Encoding [3] is an encoding method integrating the order and log en-
codings without channeling constraints. In the hybrid encoding, each variable is
encoded by either the order encoding or the log encoding, and each constraint is
encoded according to its variables’ encoding. The degree of hybridization can be
controlled by classifying the order-encoded and log-encoded variables. Fun-sCOP
uses the criterion domain product to classify variables as same as in [3].

4 SAT Solvers

GlueMiniSat [2] is used for the order encoding. It is a winning solver in the SAT solver
competitions, and the submitted version of GlueMiniSat uses a special propagator for
the axiom clauses of the order encoding.

CaDiCaL 7 is used for the hybrid encoding. It is also a winning solver in the recent
SAT solver competitions, and shows a good performance in our preliminary evaluation.

7 https://github.com/arminbiere/cadical

References

1. Gotou, Y., Nabeshima, H.: ManyGlucose. In: Proceedings of SAT Competition 2018: Solver
and Benchmark Descriptions, volume B-2018-1 of Department of Computer Science Series
of Publications B, University of Helsinki. p. 27 (2018)

2. Nabeshima, H., Iwanuma, K., Inoue, K.: GlueMiniSat 2.2.8. In: Proceedings of SAT Compe-
tition 2014. pp. 35–36 (2014)

3. Soh, T., Banbara, M., Tamura, N.: Proposal and evaluation of hybrid encoding of CSP to
SAT integrating order and log encodings. International Journal on Artificial Intelligence Tools
26(1), 1–29 (2017)

4. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In:
Proceedings of the 12th International Conference on Theory and Applications of Satisfiability
Testing (SAT 2009), LNCS 5584. pp. 244–257 (2009)

5. Tamura, N., Banbara, M.: Sugar: a CSP to SAT translator based on order encoding. In: Pro-
ceedings of the 2nd International CSP Solver Competition. pp. 65–69 (2008)

6. Tamura, N., Banbara, M., Soh, T.: PBSugar: Compiling pseudo-boolean constraints to SAT
with order encoding. In: Proceedings of the 25th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI 2013). pp. 1020–1027 (Nov 2013)

7. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into SAT. Con-
straints 14(2), 254–272 (2009)

72

The Glasgow Constraint Solver

Ciaran McCreesh
University of Glasgow, Glasgow, Scotland

ciaran.mccreesh@glasgow.ac.uk

Version of June 22nd, 2022

The Glasgow Constraint Solver is an open source constraint programming solver, developed in
C++20. Currently it supports only integer variables, a few global constraints (all different, count,
element, integer linear inequalities, table, min / max, n value), and simple backtracking with smallest
domain first as a variable-ordering heuristic. It is not particularly optimised for performance. However,
it has one unusual feature: it can produce proof logs for any problem that it can solve, allowing for
independent verification of its results [1].

Licence. The Glasgow Constraint Solver is licensed under the MIT License

Code and documentation. Source code, installation instructions, and instructions on how to
solve problems and verify solutions are all available on Github: https://github.com/ciaranm/glasgow-
constraint-solver.

Acknowledgements

This work has been supported by a Royal Academy of Engineering research fellowship.

References

[1] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. An auditable constraint programming
solver. In Principles and Practice of Constraint Programming - 28th International Conference,
CP, 2022.

73

MiniCPBP

A Constraint Solver Propagating Beliefs

Gilles Pesant, Auguste Burlats
Polytechnique Montréal

Canada
{gilles.pesant, auguste.burlats}@polymtl.ca

June 2022

MiniCPBP is an open-source constraint solver used as a research platform by our team. It is
developed in Java on top of MiniCP [3] and extends constraint propagation with belief propagation[4].
Among other things, it can use this extra information to guide search[1]. MiniCPBP features:

• integer variables, including 0/1 (Boolean) variables;

• many simple constraints (Abs, Or, Maximum, Minimum, =, 6=, ≤, ×) and, in most cases, their
reification;

• several common global constraints (Element, Sum, AllDifferent, Cardinality, Table, Regular,
Among/AtLeast/AtMost/Exactly, Circuit, Disjunctive, Cumulative);

• dedicated weighted counting algorithms for most of these constraints in order to propagate beliefs;

• novel branching heuristics exploiting the propagated beliefs about variable-value assignments
(e.g. minEntropy, maxMarginal, maxMarginalStrength).

CP-based Belief Propagation

MiniCPBP implements a generalization of constraint propagation which, instead of simply propa-
gating unsupported variable-value assignments, propagates beliefs about each possible variable-value
assignment in the form of (marginal) probability distributions over each variable’s domain. Such prop-
agation is organized as synchronized message passing (iterated belief propagation). We illustrate this
on a small example taken from [4]. Consider variables a, b, c and d with identical domains {1, 2, 3, 4},
and the following constraints :

i. alldifferent(a, b, c)

ii. a+ b+ c+ d = 7

iii. c ≤ d

This CSP has two solutions : 〈a = 2, b = 3, c = 1, d = 1〉 and 〈a = 3, b = 2, c = 1, d = 1〉. If we
examine variable a, we observe that assignment a = 2 is present in one solution and that assignment
a = 3 is present in the other one. There is no valid solution containing a = 1 or a = 4. Therefore
its true marginal distribution is θa(1) = 0, θa(2) = 1/2, θa(3) = 1/2, θa(4) = 0. The true marginals for
each variable are shown in Table 1 (top left).

74

1 2 3 4
θa 0 .5 .5 0
θb 0 .5 .5 0
θc 1 0 0 0
θd 1 0 0 0

1 2 3 4
θa .25 .25 .25 .25
θb .25 .25 .25 .25
θc .25 .25 .25 .25
θd .25 .25 .25 .25

1 2 3 4
θa .50 .30 .15 .05
θb .50 .30 .15 .05
θc .62 .28 .09 .01
θd .29 .34 .26 .11

1 2 3 4
θa .01 .52 .46 .01
θb .01 .52 .46 .01
θc .98 .02 .00 .00
θd .90 .10 .00 .00

Table 1: True marginals (top left); initial uniform marginals (top right), marginals after 1st iteration
of BP (bottom left), and after 10th iteration (bottom right).

1 2 3 4
θia 1/4 1/4 1/4 1/4
θiia 10/20 6/20 3/20 1/20
θib 1/4 1/4 1/4 1/4
θiib 10/20 6/20 3/20 1/20
θic 1/4 1/4 1/4 1/4
θiic 10/20 6/20 3/20 1/20
θiiic 4/10 3/10 2/10 1/10
θiid 10/20 6/20 3/20 1/20
θiiid 1/10 2/10 3/10 4/10

Table 2: Initial local marginals computed by each constraint. The superscript refers to the constraint
whereas the subscript refers to the variable. Notice e.g. how constraints ii and iii initially give
opposing beliefs for variable d.

CP-based Belief propagation starts from a uniform distribution for each variable x (θx(v) =
1/|D(x)| ∀v ∈ D(x)) which, as shown in Table 1, tries to converge to the true marginal distri-
butions as iterations proceed. Each iteration adjusts a variable’s marginals by taking the product of
the local marginals computed at each constraint given the current marginals (this is where weighted
counting comes in). For example the initial local marginals computed by each constraint (given
uniform marginals) are shown in Table 2.

Entropy-based Branching

Because Belief Propagation allows us to approximate the marginal distribution for each variable of our
model, we are also able to approximate the entropy of each variable. Entropy is a powerful expression
of the knowledge we have about a variable: the lower its entropy, the more confident we are about
which value it should take (e.g. a bound variable has zero entropy). Thus entropy is a powerful tool
that we can exploit to make better branching decisions. We define the entropy H(x) of variable x as

H(x) = −
∑

v∈D(x)

θx(v)log(θx(v))

Branching heuristic minEntropy [2] selects the variable with the lowest entropy and the value with
the highest marginal.

We can extend the concept of entropy to the whole model as the mean normalized entropy of its

75

variables:

H =

∑
x∈X

H(x)
log(|D(x)|)
|X|

The number of BP iterations we perform before each branching decision is decided dynamically based
on how stable the model entropy has become [2].

Constraint Weights

In CP-based Belief Propagation by default all constraints are considered on an equal footing. However
within a model the arity of constraints can vary significantly. A constraint with a considerably larger
arity intuitively represents a larger part of the problem and thus should provide a more enlightened
view of what a valid solution should be. We could therefore give more weight to the messages it sends.
Let X denote the set of variables, C be the set of constraints, and X(c) the scope of constraint c. We
define the weight of c as

wc = 1 +
|X(c)| −minc′∈C |X(c′)|

|X| ,

which ranges between 1 and 2, and use it as an exponent on messages from constraints. A larger
weight accentuates the extreme values among marginals.

Competition Entries

The two variants of our solver entered in this competition both branch according to minEntropy and
stop BP iterations dynamically. They differ in that during BP one considers a constraint’s weight as
its arity. The code of MiniCPBP is available at https://github.com/PesantGilles/MiniCPBP

References

[1] B. Babaki, B. Omrani, and G. Pesant. Combinatorial Search in CP-Based Iterated Belief Prop-
agation. In Helmut Simonis, editor, Principles and Practice of Constraint Programming - 26th
International Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7-11, 2020, Proceed-
ings, volume 12333 of Lecture Notes in Computer Science, pages 21–36. Springer, 2020.

[2] A. Burlats and G. Pesant. Exploiting Model Entropy to Make Branching Decisions in Constraint
Programming. In CP’22 Doctoral Program, 2022.

[3] L. Michel, P. Schaus, and P. Van Hentenryck. MiniCP: A Lightweight Solver for Constraint
Programming. Mathematical Programming Computation, 13(1):133–184, 2021.

[4] G. Pesant. From Support Propagation to Belief Propagation in Constraint Programming. J. Artif.
Intell. Res., 66:123–150, 2019.

76

Mistral
Mistral IS a Terrific Recursive Acronym for a Library

Emmanuel Hebrard
LAAS-CNRS, Université de Toulouse

August 2022

Abstract

Mistral is an open source constraint programming library written in
C++ and available on GitHub. It implements a modelling API, however,
it can also read instance files in XCSP31 or FlatZinc format. Moreover, it
is fully interfaced with Numberjack [6] which provides a Python API for
modelling and solving combinatorial optimization problems using several
back-end solvers.

Solver Engine

The solver engine relies on standard mechanisms, using a priority constraint
queue and a domain event stack to implement the propagation procedure. More-
over, it supports dynamic type change for variables: domains are initially imple-
mented using intervals or Boolean types whenever possible, and can be changed
to (bit)sets during search when a propagator requires it. The backtracking
mechanism is implemented using a trail in a standard way.

Propagators

Several classic global constraints are implemented, such as LexOrdering [4],
bound consistency propagator for AllDifferent [10] and Gcc [9]. Moreover,
less standard constraints were implemented within the context of research ar-
ticles on constraint propagation, such as the AtMostSeqCard constraint for
car-sequencing [12] or a VertexCover constraint [3] to reason about cliques,
independant set or vertex covers. Search Strategy The search heuristic used
for the XCSP3 competition is based on Last Conflict [8], using a variant of
Weighted Degree [2] as default strategy: in the case of failure raised by a propa-
gator of a global constraint, an explanation of the conflict is computed and only
the weight of the variables participating in the conflict is incremented. This
heuristic is fully described in [7]. Moreover, given the next variable x to branch

1Using Gilles Audemard’s parser.

1

77

on, the solver chooses the value that was assigned to x in the best solution found
so far, if possible, or the minimum value in the domain of x otherwise.

Applications of Mistral

Mistral was used to implement a state-of-the-art method for disjunctive schedul-
ing which improved several best known results on classic benchmarks [5]. More
recently, some clause learning methods were implemented in Mistral, still im-
proving the results on disjunctive scheduling [11] and car-sequencing prob-
lems [1]. These methods were not used within the context of the XCSP3 com-
petition.

References

[1] Christian Artigues, Emmanuel Hebrard, Valentin Mayer-Eichberger, Mo-
hamed Siala, and Toby Walsh. SAT and Hybrid Models of the Car Se-
quencing Problem. In Integration of AI and OR Techniques in Constraint
Programming (CPAIOR), pages 268–283, 2014.

[2] Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais.
Boosting Systematic Search by Weighting Constraints. In Proceedings of
the 16th European Conference on Artificial Intelligence (ECAI), pages 146–
150, 2004.

[3] Clément Carbonnel and Emmanuel Hebrard. Propagation via Kerneliza-
tion: The Vertex Cover Constraint. In Principles and Practice of Constraint
Programming (CP), pages 147–156, 2016.

[4] Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, and Toby
Walsh. Propagation algorithms for lexicographic ordering constraints. Ar-
tif. Intell., 170(10):803–834, 2006.

[5] Diarmuid Grimes and Emmanuel Hebrard. Solving Variants of the Job
Shop Scheduling Problem Through Conflict-Directed Search. INFORMS
J. Comput., 27(2):268–284, 2015.

[6] Emmanuel Hebrard, Eoin O’Mahony, and Barry O’Sullivan. Constraint
Programming and Combinatorial Optimisation in Numberjack. In Inte-
gration of AI and OR Techniques in Constraint Programming (CPAIOR),
pages 181–185, 2010.

[7] Emmanuel Hebrard and Mohamed Siala. Explanation-Based Weighted De-
gree. In Integration of AI and OR Techniques in Constraint Programming
(CPAIOR), pages 167–175, 2017.

[8] Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal.
Reasoning from last conflict(s) in constraint programming. Artif. Intell.,
173(18):1592–1614, 2009.

2

78

[9] Claude-Guy Quimper, Alexander Golynski, Alejandro López-Ortiz, and
Peter van Beek. An Efficient Bounds Consistency Algorithm for the Global
Cardinality Constraint. Constraints An Int. J., 10(2):115–135, 2005.

[10] Claude-Guy Quimper, Peter van Beek, Alejandro López-Ortiz, Alexander
Golynski, and Sayyed Bashir Sadjad. An Efficient Bounds Consistency
Algorithm for the Global Cardinality Constraint. In Principles and Practice
of Constraint Programming (CP), pages 600–614, 2003.

[11] Mohamed Siala, Christian Artigues, and Emmanuel Hebrard. Two Clause
Learning Approaches for Disjunctive Scheduling. In Principles and Practice
of Constraint Programming (CP), pages 393–402, 2015.

[12] Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. An opti-
mal arc consistency algorithm for a particular case of sequence constraint.
Constraints An Int. J., 19(1):30–56, 2014.

3

79

Nacre

Nogood And Clause Reasoning Engine

Gaël Glorian
France

gael.glorian@gmail.com

Version 1.0.6 – May, 2022

Nacre [3, 4] is a constraint solver written in C++. The main purpose of this solver is to experiment
nogood recording (with a clause reasoning engine) in Constraint Programming (CP). In particular,
the data structures of the solver have been carefully designed to play around nogoods and clauses.

Usage. You can compile and run Nacre using the following lines:

cd core && make -j

./nacre_mini_release <xcsp3_file> method [options]

with:

• <xcsp3 file>: a xcp3 file representing a CSP instance

• method: the method to use for solving the CSP instance. Possible values are:

– -complete: Simple complete search

– -incng: Complete search with Increasing Nogoods [6]

– -nld: Complete search with Negative last-decision nogoods [5]

– -ca: Hybrid solving with conflict analysis, SAT-based lazy explanations [1, 2]

• [options]: possible options to be used when running the solver (e.g. −l100 for Luby sequence
where every terms is multiplied by 100 as restart policy; −cm for competition verbose mode)

Competition. Nacre is enlisted in the Minitrack - CSP ; line used for the competition:

./nacre_mini_release BENCHNAME -ca -l100 -cm

Licence. Nacre is licensed under the GNU General Public License v3.0.

Code. Nacre code is available online at github.com/gglorian/Nacre1.

1New official Nacre repository, forked from previous competition sources.

80

Acknowledgements

A part of this work has been supported by the project CPER DATA from the “Hauts-de-France”
Region. A part of this work was supported by the KIWI project of the “Nouvelle-Aquitaine” Region.

References

[1] Ian P. Gent, Ian Miguel, and Neil C. A. Moore. Lazy explanations for constraint propagators.
In Manuel Carro and Ricardo Peña, editors, Practical Aspects of Declarative Languages, 12th
International Symposium, PADL 2010, Madrid, Spain, January 18-19, 2010. Proceedings, volume
5937 of Lecture Notes in Computer Science, pages 217–233. Springer, 2010.

[2] Gael Glorian. Hybridation de techniques d’apprentissage de clauses en programmation par con-
traintes. Theses, Université d’Artois, December 2019.

[3] Gael Glorian. Nacre. In Christophe Lecoutre and Olivier Roussel, editors, Proceedings of the 2018
XCSP3 Competition, pages 85–85, 2019.

[4] Gael Glorian, Jean-Marie Lagniez, and Christophe Lecoutre. NACRE - A nogood and clause
reasoning engine. In Elvira Albert and Laura Kovács, editors, LPAR 2020: 23rd International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, Alicante, Spain, May
22-27, 2020, volume 73 of EPiC Series in Computing, pages 249–259. EasyChair, 2020.

[5] Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal. Recording and mini-
mizing nogoods from restarts. J. Satisf. Boolean Model. Comput., 1(3-4):147–167, 2007.

[6] Jimmy H. M. Lee, Christian Schulte, and Zichen Zhu. Increasing nogoods in restart-based search.
In Dale Schuurmans and Michael P. Wellman, editors, Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pages 3426–3433.
AAAI Press, 2016.

81

An XCSP3 Solver in Picat

Neng-Fa Zhou1

CUNY Brooklyn College & Graduate Center

Abstract. This short paper gives an overview of the XCSP3 solver im-
plemented in Picat. Picat provides several constraint modules, and the
Picat XCSP3 solver uses the sat module. The XCSP3 solver mainly con-
sists of a parser implemented in Picat, which converts constraints from
XCSP3 format to Picat. The solver demonstrates the strengths of Picat,
a logic-based language, in parsing, modeling, and encoding constraints
into SAT. The solver submitted to the 2022 XCSP competition is based
on the one that won the 2019 XCSP competition. The high performance
of the solver also demonstrates the viability of using a SAT solver to
solve general constraint satisfaction and optimization problems.

XCSP3

XCSP3 [1] is an XML-based domain specific language for describing constraint
satisfaction and optimization problems (CSP). XCSP3 is positioned as an in-
termediate language for CSPs. It does not provide high-level constructs as seen
in modeling languages. However, XCSP3 is significantly more complex than a
canonical-form language, like FlatZinc [4]. A constraint can sometimes be de-
scribed in either the standard format or simplified format. The advanced format,
which is used by group and matrix constraints, allows more compact description
of constraints.

Picat

Picat [10] is a simple, and yet powerful, logic-based multi-paradigm programming
language. Picat is a Prolog-like rule-based language, in which predicates, func-
tions, and actors are defined with pattern-matching rules. Picat incorporates
many declarative language features for better productivity of software devel-
opment, including explicit non-determinism, explicit unification, functions, list
comprehensions, constraints, and tabling. Picat also provides imperative lan-
guage constructs, such as assignments and loops, for programming everyday
things. Picat provides facilities for solving combinatorial search problems, in-
cluding a common interface with CP, SAT, MIP, and SMT solvers, tabling for
dynamic programming, and a module for planning. Picat uses, in the XCSP3
solver, the SAT module, which generally performs better than the CP, MIP, and
SMT modules on competition benchmarks.

82

Parsing

The availability of different formats in XCSP3 makes it a challenge to parse the
XCSP3 language. A parser implemented in C++ by the XCSP3 designers has
more than 10,000 lines of code. The entire Picat implementation of XCSP3 has
about 2,000 lines of code, two-thirds of which is devoted to parsing and syntax-
directed translation. As illustrated in the following example, Picat is well suited
to parsing.

% E -> T E’
ex(Si,So) => term(Si,S1), ex_prime(S1,So).

% E’ -> + T E’ | - T E’ | e
ex_prime([’+’|Si],So) =>

term(Si,S1),
ex_prime(S1,So).

ex_prime([’-’|Si],So) =>
term(Si,S1),
ex_prime(S1,So).

ex_prime(Si,So) => So = Si.

The parser follows the framework for translating context-free grammar into Pro-
log [5]: a non-terminal is encoded as a predicate that takes an input string (Si)
and an output string (So), and when the predicate succeeds, the difference Si-So
constitutes a string that matches the nonterminal. Unlike in Prolog, pattern-
matching rules in Picat are fully indexed, which facilitates selecting right rules
based on look-ahead tokens.

Modeling

It is well known that loops and list comprehensions are a necessity for modeling
CSPs. The following Picat example illustrates the convenience of these language
constructs for modeling.

post_constr(allDifferentMatrix(Matrix)) =>
NRows = len(Matrix),
NCols = len(Matrix[1]),
foreach (I in 1..NRows)

all_different(Matrix[I])
end,
foreach (J in 1..NCols)

all_different([Matrix[I,J] : I in 1..NRows])
end.

The allDifferentMatrix(Matrix) constraint takes a matrix that is represented
as a two-dimensional array, and posts an all different constraint for each row
and each column of the matrix.

SAT Encoding

Picat adopts the log encoding [2] for domain variables. While log encoding had
been perceived to be unsuited to arithmetic constraints due to its hindrance to
propagation [3], we have shown that log encoding can be made competitive with
optimizations [8]. There are hundreds of optimizations implemented in Picat, and
they are described easily as pattern-matching rules in Picat. We have also shown
that, with specialization, the binary adder encoding is not only compact, but

83

also generally more efficient than BDD encodings for PB constraints [9]. Picat
adopts specialized decomposition algorithms for some of the global constraints,
such as the circuit and reachability constraints [6, 7].

SAT Solving

Picat uses the kissat SAT solver.1 For a satisfibility problem, Picat calls the SAT
solver, and converts the SAT solution to a solution for the decision variables if
the problem is satisfiable. For an optimization problem, Picat uses a branch-
and-bound algorithm to find the best solution, and calls the SAT solver each
time a domain bound of the objective variable is narrowed. The kissat generally
outperforms the Maple solver, which is used in the Picat XCSP3 solver submitted
to the 2019 competition.

References

1. Frederic Boussemart, Christophe Lecoutre, Gilles Audemard, and Cdric Piette.
Xcsp3: An integrated format for benchmarking combinatorial constrained prob-
lems, 2016.

2. Kazuo Iwama and Shuichi Miyazaki. SAT-variable complexity of hard combinato-
rial problems. In IFIP Congress (1), pages 253–258, 1994.

3. Donald Knuth. The Art of Computer Programming, Volume 4, Fascicle 6: Satis-
fiability. Addison-Wesley, 2015.

4. Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. MiniZinc: Towards a standard CP modelling language. In
CP, pages 529–543, 2007.

5. Fernando C. N. Pereira and David H. D. Warren. Definite clause grammars for
language analysis - A survey of the formalism and a comparison with augmented
transition networks. Artif. Intell., 13(3):231–278, 1980.

6. Neng-Fa Zhou. In pursuit of an efficient SAT encoding for the Hamiltonian cycle
problem. In CP, pages 585–602, 2020.

7. Neng-Fa Zhou. Modeling and solving graph synthesis problems using SAT-encoded
reachability constraints in Picat. In Proceedings 37th International Conference on
Logic Programming (Technical Communications), volume 345 of EPTCS, pages
165–178, 2021.

8. Neng-Fa Zhou and H̊akan Kjellerstrand. Optimizing SAT encodings for arithmetic
constraints. In CP, pages 671–686, 2017.

9. Neng-Fa Zhou and H̊akan Kjellerstrand. Encoding PB constraints into SAT via
binary adders and BDDs – revisited. In Workshop on Experimental Evaluation of
Algorithms for Solving Problems with Combinatorial Explosion RCRA, 2018.

10. Neng-Fa Zhou, H̊akan Kjellerstrand, and Jonathan Fruhman. Constraint Solving
and Planning with Picat. Springer Briefs in Intelligent Systems. Springer, 2015.

1 https://github.com/arminbiere/kissat

84

RBO and miniRBO

Mohamed Sami Cherif Djamal Habet1 Cyril Terrioux

Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
{firstname.name}@univ-amu.fr

(mini)RBO (Restart Based Optimizer) is an open-source constraint solver for COP instances. It
is written in C++ and implements a variant of the algorithm MAC+RST [3].

For the competition, we have made the following choices:

• The variable heuristic relies on Last Conflict [4] combined with a multi-armed bandit with 9
arms [1]. The i-th arm is based on CHS (for Conflict History Search [2]) with α = 0.1 ∗ i and
δ = 10−4.

• Solution-saving [5] combined with lexico is used as value ordering heuristic.

• Generalized arc-consistency is enforced by a propagation-based system exploiting events.

• (mini)RBO relies on restarts performed according to a geometric restart policy based on the
number of conflicts with an initial cutoff set to 50 and an increasing factor set to 1.05,

(mini)RBO is able to handle all the constraints and objective functions used in the competition.

Licence. (mini)RBO is licensed under the MIT License.

Code. The source code is available on Github: https://github.com/Terrioux/BTD-RBO.

Command line. (mini)RBO can be launched thanks to the following command line:

SOLVER TIMELIMIT BENCHNAME

where:

• SOLVER is the path to the executable BTD or miniBTD,

• TIMELIMIT is the number of seconds allowed for solving the instance,

• BENCHNAME is the name of the XML file representing the instance we want to solve.

References

[1] Mohamed Sami Cherif, Djamal Habet, and Cyril Terrioux. On the Refinement of Conflict History
Search Through Multi-Armed Bandit. In Proceedings of 32nd IEEE International Conference on
Tools with Artificial Intelligence (ICTAI), pages 264–271. IEEE, 2020.

[2] Djamal Habet and Cyril Terrioux. Conflict History Based Heuristic for Constraint Satisfaction
Problem Solving. J. Heuristics, 27(6):951–990, 2021.

85

[3] C. Lecoutre, L. Säıs, S. Tabary, and V. Vidal. Recording and Minimizing Nogoods from Restarts.
JSAT, 1(3-4):147–167, 2007.

[4] Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal. Reasoning from last
conflict(s) in constraint programming. Artif. Intell., 173(18):1592–1614, 2009.

[5] Julien Vion and Sylvain Piechowiak. Une simple heuristique pour rapprocher DFS et LNS pour
les COP. In Actes des Journées Francophones de Programmations par Contraintes (JFPC), pages
39–45, 2017.

86

Sat4j-CSP-PB

A Pseudo-Boolean-Based Constraint Solver

Thibault Falque1,2 and Romain Wallon2

1 Exakis Nelite
2 CRIL, Univ Artois & CNRS
{falque,wallon}@cril.fr

XCSP’22 - August 2022

Sat4j-CSP-PB is a CSP solver based on the pseudo-Boolean solver Sat4j [4].

1 Description of the solving approach

Sat4j-CSP-PB encodes the constraints it receives as pseudo-Boolean (PB) constraints of the form∑n
i=1 αiℓi △ δ, where n is a positive integer, the weights (or coefficients) αi and the degree δ are

integers, ℓi are literals and △∈ {<,≤,=,≥, >}. This allows to exploit the reasoning power of PB
solvers based on the cutting planes proof system [2, 3, 5].

For some constraints, using a PB encoding is particularly convenient as it is more natural and more
succinct than the clausal encodings that would be used by regular SAT solvers. This is particularly
the case for the following constraints:

• all-different

• cardinality

• count

• n-values

• sum

As PB solvers are extensions of SAT solvers, we can also use clausal encodings for other constraints
to encode, even though this often prevents PB solvers to benefit from the full inference power of the
cutting planes proof system.

There are however some constraints that are not supported yet, and will lead the solver to output
s UNSUPPORTED if one of the following features appears in the input instance:

• symbolic variables
• bin packing

• circuit

• cumulative

• element with matrices
• “smart” extension

• intension constraints using pow

• mdd

• precedence

• regular

• stretch

87

2 Variants of the underlying PB solver

Sat4j-CSP-PB uses one of the PB solvers implemented by Sat4j to solve the PB encoding used to
represent the input problem. The variants submitted to the competition are:

• sat4j-resolution, which implements a resolution-based conflict analysis (PB constraints are
lazily encoded as clauses during conflict analysis),

• sat4j-cp, which implements a cutting-planes-based conflict analysis,
• sat4j-rs, which implements a conflict analysis à la RoundingSat [1], and
• sat4j-both, which uses a portfolio of sat4j-cp and sat4j-resolution.

3 Running Sat4j-CSP-PB

Sat4j-CSP-PB is written in Java 11 and uses the Jigsaw modular system. Java 11 is thus required
to compile and execute this solver. To compile Sat4j-CSP-PB, you may run the following command
at the root of the project:

./gradlew csp

Then, you will be able to run the solver using the wrapper bash script provided along with the solver:

./exec/sat4j-csp.sh [options] <path/to/instance.xml>

where

• <path/to/instance.xml> is an XCSP3 file representing a CSP or COP instance, and
• [options] are the possible options to be used when running the solver.

4 License

Sat4j-CSP-PB is licensed under the GNU Lesser General Public License.

5 Code

The source code of Sat4j-CSP-PB is available on OW2’s GitLab.

References

[1] Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-boolean solving. In
Proceedings of IJCAI 2018, pages 1291–1299, 2018.

[2] Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of
the American Mathematical Society, pages 275–278, 1958.

[3] J. N. Hooker. Generalized resolution and cutting planes. Annals of Operations Research, 12(1):217–
239, 1988.

[4] Daniel Le Berre and Anne Parrain. The SAT4J library, Release 2.2, System Description. Journal
on Satisfiability, Boolean Modeling and Computation, 7:59–64, 2010.

[5] Jakob Nordström. On the Interplay Between Proof Complexity and SAT Solving. ACM SIGLOG
News, 2(3):19–44, August 2015.

88

Université Fédérale de Toulouse, ANITI
INRAE, UR 875, 31326 Toulouse, France

toulbar2
An exact cost function network solver

Version 1.2 – July 11, 2022

• David Allouche

• Abdelkader Beldjilali

• Marianne Defresne

• Valentin Durante

• Simon de Givry∗

• George Katsirelos

• Olivier Lamothe

• Pierre Montalbano

• Abdelkader Ouali

• Nathalie Rousse

• Manon Ruffini

• Thomas Schiex

• Fulya Trösser

• Matthias Zytnicki

∗ contact author
simon.de-givry@inrae.fr

Introduction

toulbar2 is an open-source C++ solver for cost function networks (CFN). It is available at https://github.com/

toulbar2/toulbar2, with an MIT license and a documentation describing its interfaces with C++ and python.
The constraints and objective function are factorized in local functions on discrete variables. Each function returns

a cost for any assignment of its variables. Constraints are represented as functions with costs in {0,⊤} where ⊤ is an
upper bound cost associated with forbidden assignments. toulbar2 looks for a non-forbidden assignment of all variables
that minimizes the sum of all functions.

Using on the fly translation, toulbar2 can also directly solve optimization problems on other graphical models such
as Maximum probability Explanation on Bayesian networks, and Maximum A Posteriori on Markov random fields [10].
It can also read partial weighted MaxSAT problems, (quadratic) pseudo-Boolean optimization problems as well as
constrained satisfaction and optimization problems (COP in XCSP3 format).

toulbar2 provides and uses by default an anytime hybrid best-first branch-and-bound algorithm (HBFS) [1] that
tries to quickly provide good solutions together with an upper bound on the gap between the cost of each solution
and the (unknown) optimal cost. Thus, even when it is unable to prove optimality, it will bound the quality of the
solution provided. It can also apply a variable neighborhood search algorithm exploiting a problem decomposition
(UDGVNS) [15]. Both algorithms are complete (if enough CPU-time is given) and they can be run in parallel using
OpenMPI [3, 15]. The variable ordering heuristic is dom/wdeg [4] combined with last conflict [12]. The value ordering
heuristic exploits the last solution found if any [8] or else EDAC existential value [7]. EDAC is also used as soft local
consistency during search to provide lower bounds and prune forbidden values [5]. A weaker relaxed version is used
for pseudo-Boolean linear constraints [13]. Variable elimination is performed during search and restricted to variables
with at most two neighbors [11]. More preprocessing techniques such as cost function decomposition [9] are done
before search and pruning by dominance is also applied during search [6].

89

Beyond the service of providing optimal solutions, toulbar2 can also find a sequence of diverse solutions [16] or
exhaustively enumerate solutions below a cost threshold and perform guaranteed approximate weighted counting
of solutions. For stochastic graphical models, this means that toulbar2 will compute the partition function (or the
normalizing constant). These problems being #P-complete, toulbar2 runtimes can quickly increase on such problems.

toulbar2 was originally developped by Toulouse (INRAE, MIAT) and Barcelona (UPC, IIIA-CSIC) teams, hence
the name of the solver. Additional contributions by:

• Caen University, France (GREYC) and University of Oran, Algeria for (parallel) variable neighborhood search
methods [15] ;

• The Chinese University of Hong Kong and Caen University, France (GREYC) for global cost functions [2] ;

• Marseille University, France (LSIS) for tree decomposition heuristics ;

• Ecole des Ponts ParisTech, France (CERMICS/LIGM) for INCOP local search solver [14] ;

• Artois University, France (CRIL) for the XCSP3 format reader of CSP and COP instances.

XCSP’2022 Competition Configuration Settings

For the XCSP’2022 competition, we used the following settings:

• For COP sequential and mini COP tracks, HBFS [1] was used with default settings ; command line:
DIR/toulbar2 -time=TIMELIMIT -seed=RANDOMSEED -v=-1 BENCHNAME

• For COP parallel track, parallel HBFS [3] was used with the available number of cores and MPI compilation
settings ; command line:
mpirun -n NBCORE DIR/toulbar2mpi -time=TIMELIMIT -seed=RANDOMSEED -v=-1 BENCHNAME

• For COP fast track, UDGVNS [15] was used with a min-fill problem decomposition heuristic and merging clusters
with their parent cluster if the ratio of separator variables is greater than 0.7 ; command line:
DIR/toulbar2 -time=TIMELIMIT -seed=RANDOMSEED -v=-1 BENCHNAME -vns -O=-3 -E

Acknowledgements

toulbar2 has been partly funded by the French Agence Nationale de la Recherche (projects STAL-DEC-OPT from
2006 to 2008, ANR-10-BLA-0214 Ficolofo from 2011 to 2014, and ANR-16-CE40-0028 DemoGraph from 2017 to
2021) and a PHC PROCORE project number 28680VH (from 2013 to 2015). It is currently supported by ANITI
ANR-19-P3IA-0004.

References

[1] D Allouche, S de Givry, G Katsirelos, T Schiex, and M Zytnicki. Anytime Hybrid Best-First Search with Tree
Decomposition for Weighted CSP. In Proc. of CP-15, pages 12–28, Cork, Ireland, 2015.

[2] David Allouche, Christian Bessière, Patrice Boizumault, Simon de Givry, Patricia Gutierrez, Jimmy H.M. Lee,
Ka Lun Leung, Samir Loudni, Jean-Philippe Métivier, Thomas Schiex, and Yi Wu. Tractability-preserving
transformations of global cost functions. Artificial Intelligence, 238:166–189, 2016.

90

[3] Abdelkader Beldjilali, Pierre Montalbano, David Allouche, George Katsirelos, and Simon de Givry. Parallel hybrid
best-first search. In Proc. of CP-22, Haifa, Israel, 2022.

[4] F Boussemart, F Hemery, C Lecoutre, and L Sais. Boosting systematic search by weighting constraints. In ECAI,
volume 16, page 146, 2004.

[5] M. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner. Soft arc consistency revisited.
Artificial Intelligence, 174(7–8):449–478, 2010.

[6] S de Givry, S Prestwich, and B O’Sullivan. Dead-End Elimination for Weighted CSP. In Proc. of CP-13, pages
263–272, Uppsala, Sweden, 2013.

[7] S. de Givry, M. Zytnicki, F. Heras, and J. Larrosa. Existential arc consistency: Getting closer to full arc
consistency in weighted csps. In Proc. of IJCAI-05, pages 84–89, Edinburgh, Scotland, 2005.

[8] E Demirovic, G Chu, and P J. Stuckey. Solution-based phase saving for CP: A value-selection heuristic to simulate
local search behavior in complete solvers. In Proc. of CP-18, pages 99–108, Lille, France, 2018.

[9] A Favier, S de Givry, A Legarra, and T Schiex. Pairwise decomposition for combinatorial optimization in graphical
models. In Proc. of IJCAI-11, Barcelona, Spain, 2011.

[10] D Koller and N Friedman. Probabilistic graphical models: principles and techniques. The MIT Press, 2009.

[11] J. Larrosa. Boosting search with variable elimination. In Principles and Practice of Constraint Programming -
CP 2000, volume 1894 of LNCS, pages 291–305, Singapore, September 2000.

[12] C. Lecoutre, L Säıs, S. Tabary, and V. Vidal. Reasoning from last conflict(s) in constraint programming. Artificial
Intelligence, 173:1592,1614, 2009.

[13] Pierre Montalbano, Simon de Givry, and George Katsirelos. Multiple-choice knapsack constraint in graphical
models. In Proc. of CP-AI-OR’2022, Los Angeles, CA, 2022.

[14] B. Neveu and G. Trombettoni. INCOP: An Open Library for INcomplete Combinatorial OPtimization. In Proc.
of CP-03, pages 909–913, Cork, Ireland, 2003.

[15] Abdelkader Ouali, David Allouche, Simon de Givry, Samir Loudni, Yahia Lebbah, Lakhdar Loukil, and Patrice
Boizumault. Variable neighborhood search for graphical model energy minimization. Artificial Intelligence,
278(103194):22p., 2020.

[16] Manon Ruffini, Jelena Vucinic, Simon de Givry, George Katsirelos, Sophie Barbe, and Thomas Schiex. Guaranteed
diversity and optimality in cost function network based computational protein design methods. Algorithms,
14(6):168, 2021.

91

92 CHAPTER 3. SOLVERS

Chapter 4

Results

In this chapter, rankings for the various tracks of the XCSP3 Competition 2022 are given.
Importantly, remember that you can find all detailed results, including all traces of solvers at
http://www.cril.univ-artois.fr/XCSP22/.

4.1 Context

Remember that the tracks of the competition are given by Table 4.1 and Table 4.2.

Problem Goal Exploration Timeout

CSP one solution sequential 40 minutes
COP best solution sequential 40 minutes

fast COP best solution sequential 4 minutes
// COP best solution parallel 40 minutes

Table 4.1: Standard Tracks.

Problem Goal Exploration Timeout

MiniCSP one solution sequential 40 minutes
MiniCOP best solution sequential 40 minutes

Table 4.2: Mini-Solver Tracks.

Also, note that:

• the cluster was provided by CRIL and is composed of nodes with two quad-cores (Intel
Xeon CPU E5-2637 v4 @ 3.50GHz, each equipped with 64 GiB RAM).

• Hyperthreading was disabled.

• Each solver was allocated a CPU and 64 GiB of RAM, independently from the tracks.

• Timeouts were set accordingly to the tracks through the tool runsolver:

93

http://www.cril.univ-artois.fr/XCSP22/

94 CHAPTER 4. RESULTS

– sequential solvers in the fast COP track were allocated 4 min of CPU time and
12 min of Wall Clock time,

– other sequential solvers were allocated 40 min of CPU time and 120 min of Wall
Clock time,

– parallel solvers were allocated 160 min of CPU time and 120 min of Wall Clock time.

• The selection of instances for the Standard tracks was composed of 200 CSP instances
and 250 COP instances.

• The selection of instances for the Mini-solver tracks was composed of 150 CSP instances
and 158 COP instances.

About Scoring. The number of points won by a solver S is decided as follows:

• for CSP, this is the number of times S is able to solve an instance, i.e., to decide the
satisfiability of an instance (either exhibiting a solution, or indicating that the instance
is unsatisfiable)

• for COP, this is, roughly speaking, the number of times S gives the best known result,
compared to its competitors. More specifically, for each instance I:

– if I is unsatisfiable, 1 point is won by S if S indicates that the instance I is unsat-
isfiable, 0 otherwise,

– if S provides a solution whose bound is less good than another one (found by another
competiting solver), 0 point is won by S,

– if S provides an optimal solution, while indicating that it is indeed the optimality, 1
point is won by S,

– if S provides (a solution with) the best found bound among all competitors, this
being possibly shared by some other solver(s), while indicating no information about
optimality: 1 point is won by S if no other solver proved that this bound was optimal,
0.5 otherwise.

Off-competition Solvers. Some solvers were run while not officially entering the competi-
tion: we call them off-competition solvers. ACE is one of them because its author (C. Lecoutre)
conducted the selection of instances, which is a very strong bias (ACE ABD was also consid-
ered as being off-competition of the main tracks to avoid any suspected collusion). Also, when
two variants (by the same competiting team) of a same solver compete in a same track, only
the best one is ranked (and the second one considered as being off-competition). This is why
Fun-sCOP-glue was considered as off-competition in the CSP track.

4.2 Rankings

CSP

1. Picat

2. Fun-sCOP

3. Choco

4.2. RANKINGS 95

COP

1. Picat

2. CoSoCo

3. Mistral

Fast COP

1. CoSoCo

2. Picat

3. Mistral

// COP

1. Choco

2. toulbar2

Mini CSP

1. Exchequer

2. miniBTD

3. Sat4j-CSP-PB

Mini COP

1. Mistral

2. toulbar2

3. miniRBO

96 CHAPTER 4. RESULTS

Bibliography

[1] R. Barták, N.-F. Zhou, R. Stern, E. Boyarski, and P. Surynek. Modeling and solving the
multi-agent pathfinding problem in Picat. In Proceedings of ICTAI’17, pages 959–966,
2017.

[2] E. Bensana, M. Lemaitre, and G. Verfaillie. Earth observation satellite management.
Constraints, 4(3):293–299, 1999.

[3] E. Bourreau and T. Benoist. Fast global filtering for eternity II. Constraint Programming
Letters, 3:36–49, 2008.

[4] F. Boussemart, C. Lecoutre, G. Audemard, and C. Piette. XCSP3: An Integrated For-
mat for Benchmarking Combinatorial Constrained Problems. Technical Report. v3.0.7 on
CoRR, arXiv:1611.03398, 2016–2021. 242 pages.

[5] F. Boussemart, C. Lecoutre, G. Audemard, and C. Piette. XCSP3-core: A Format for
Representing Constraint Satisfaction/Optimization Problems. Technical Report. v3.0.7 on
CoRR, arXiv:2009.00514, 2020–2021. 106 pages.

[6] B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J.P. Warners. Radio Link Frequency
Assignment. Constraints, 4(1):79–89, 1999.

[7] T. Guns, S. Nijssen, and L. De Raedt. Itemset mining: A constraint programming per-
spective. Artificial Intelligence, 175(12-13):1951–1983, 2011.

[8] C. Lecoutre and N. Szczepanski. PyCSP3: Modeling Combinatorial Constrained Problems
in Python. Technical Report. v2.0 on CoRR, arXiv:2009.00326, 2020–2021. 144 pages.

[9] L. Libralesso, F. Delobel, P. Lafourcade, and C. Solnon. Automatic generation of declar-
ative models for differential cryptanalysis. In Proceedings of CP’21, pages 40:1–40:18,
2021.

[10] J.-P. Métivier, P. Boizumault, and S. Loudni. Solving nurse rostering problems using soft
global constraints. In Proceedings of CP’09, pages 73–87, 2009.

[11] G. Pesant, C.-G. Quimper, and A. Zanarini. Counting-based search: Branching heuristics
for constraint satisfaction problems. Journal of Artificial Intelligence Research, 43:173–210,
2012.

97

https://arxiv.org/pdf/1611.03398.pdf
https://arxiv.org/pdf/2009.00514.pdf
https://arxiv.org/pdf/2009.00326.pdf

	1 About the Selection of Problems in 2022
	2 Problems and Models
	2.1 CSP
	2.1.1 Aztec Diamond
	2.1.2 Blocked Queens
	2.1.3 Car Sequencing
	2.1.4 Costas Arrays
	2.1.5 Crosswords (Satisfaction)
	2.1.6 Crypto
	2.1.7 Diamond Free
	2.1.8 Eternity
	2.1.9 Hadamard
	2.1.10 Hidato
	2.1.11 Knight Tour
	2.1.12 Molnar
	2.1.13 Number Partitioning
	2.1.14 (Nurse) Rostering
	2.1.15 Orthogonal Latin Squares
	2.1.16 PB (Pseudo-Boolean)
	2.1.17 Quasigroup
	2.1.18 Room Mate
	2.1.19 Solitaire Battleship
	2.1.20 Sports Scheduling
	2.1.21 Superpermutation

	2.2 COP
	2.2.1 Aircraft Landing
	2.2.2 Clock Triplets
	2.2.3 Coins Grid
	2.2.4 CVRP
	2.2.5 Cyclic Bandwith
	2.2.6 DC
	2.2.7 Echelon Stock
	2.2.8 Filters
	2.2.9 Itemset Mining
	2.2.10 Multi-Agent Path Finding
	2.2.11 Nurse Rostering
	2.2.12 Nursing Workload
	2.2.13 RCPSP
	2.2.14 RLFAP
	2.2.15 Spot5
	2.2.16 TAL
	2.2.17 Triangular
	2.2.18 Warehouse
	2.2.19 War or Peace

	3 Solvers
	 ACE
	 ACE ABD
	 BTD
	 Choco
	 CoSoCo
	 Exchequer
	 Fun-sCOP
	 Glasgow
	 MiniCPBP
	 Mistral
	 NACRE
	 Picat
	 RBO
	 Sat4j-CSP-PBj
	 toulbar2

	4 Results
	4.1 Context
	4.2 Rankings

