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Abstract—Discovering the latent community structure is cru-
cial to understanding the features of networks. Several ap-
proaches have been proposed to solve this challenging problem
using different measures or data structures. Among them, de-
tecting overlapping communities in a network is an usual way
towards network structure discovery. It presents nice algorithmic
issues, and plays an important role in complex network analysis.
In this paper, we propose a new approach to detect overlapping
communities in large complex networks. First, we introduce
a novel subgraph concept based on triangles to capture the
cohesion in social interactions, and propose an efficient approach
to discover clusters in networks. Next, we show how the prob-
lem of detecting overlapping communities can be expressed as
a Partial Max-SAT optimization problem. Our comprehensive
experimental evaluation on publicly available real-life networks
with ground-truth communities demonstrates the effectiveness
and efficiency of our proposed method.

Index Terms—Social Networks, Community Detection, Propo-
sitional Satisfiability.

I. INTRODUCTION

Many real world problems can be modeled as complex
entity-relationship networks where nodes represent entities
of interest and edges mimic the relationships among them.
Such connections might represent different type of relations
between individuals or entities. Fueled by technological ad-
vances and inspired by empirical analysis, the number of
such problems and the diversity of domains from which they
arise is growing steadily, including among others physics,
sociology, biology, chemistry, metabolism and nutrition. The
study of such networks can help us understand the structure
and functionalities of such systems, potentially allowing one
to predict interesting aspects of their behavior. Extracting
communities (or clusters) is of particular interest in many
of these applications. Community detection is the process of
grouping a set of entities in such a way that entities in the same
group (cluster) are more similar to one another than to the ones
in other groups. As an example, in the graph of the World
Wide Web (W3), community detection aims to find groups
of pages dealing with the same or related topics. Also, in
the context of social network, community detection identifies
groups, which are closely related in such a way that inside
each group entities share the same interests or the same topic.
In recent years, there has been a surge of research interests on
finding communities in networks.

From the point of view of the topological structure of
the graphs, community detection forms groups of nodes with
dense intra-groups connection and sparse intergroup con-
nection. Generally, real networks involve large number of
triangles, as communities involve highly connected vertices.

Our proposed overlapping communities detection frame-
work heavily exploits such triangle-based subgraph structure
and modeled in a declarative way as a partial maximum
satisfiability optimisation problem.

Such formulation allows us to benefit from the recent
advances in propositional satisfiability and its optimisation
variants. Our proposed framework follows the recent data
mining research trend exploiting two powerful declarative
models, namely constraint programming and propositional sat-
isfiability. Indeed, several data mining tasks including pattern
mining [1] and clustering [2], [3] have been modeled and
solved using these two well-known declarative and flexible
models.

The paper is organized as follows. We first discuss some re-
lated work in Section II. Then, we introduce some preliminary
definitions about propositional satisfiability and community
detection with some metrics that we will use to evaluate the
quality the detected communities (Section III). Our declarative
triangle-based framework is described in Section IV. An
extensive and comparative experimental evaluation on many
real-world datasets is presented (Section V) before concluding.

II. RELATED WORK

Related work can be classified in two categories: non-
overlapping community detection, and overlapping community
detection.

Early approaches such as random walks, spectral partition-
ing, hierarchical clustering, modularity maximization, differ-
ential equations, and statistical mechanics have all been used to
identify disjoint communities. This type of detection assumes
that the network can be partitioned into dense regions in
which nodes have more connections to each other than to the
rest of the network. For details on different non-overlapping
community detection methods, readers are referred to [4] and
[5].

Unlike previous clustering algorithms assuming that com-
munities are mutually disjoint, many authors have made the



observation that a node in real-world networks may participate
in more than one cluster. Thus, there is growing interest in
overlapping community detection algorithms that identify a
set of clusters that are not necessarily disjoint.

There exist many different methods for identifying overlap-
ping communities. These algorithms can be categorized into
five classes which reflect how communities are identified.

• Clique Percolation: This Method is based on the assump-
tion that a community consists of overlapping sets of
fully connected subgraphs and detects communities by
searching for adjacent cliques. Various algorithms have
been introduced, including CFinder [6], Clique Perco-
lation Method with weights [7], and Sequential Clique
Percolation algorithm [8].

• Line Graph and Link Partitioning: In link clustering based
algorithms, the edges between the nodes are partitioned
and not the nodes themselves to discover community
structure. A node is a part of more than one cluster if
the edges connecting it are in different clusters. Several
measures characterizing similarity between edges [9] and
algorithms have been proposed [10], [11]

• Local Expansion and Optimization: These algorithms
are based on growing a natural community or a partial
community. Some of them rely on a local benefit function
that characterizes the quality of a densely connected
group of nodes. Among the approaches that belong to
this class, we can cite [12]–[15] Some other algorithms
in this category are based on the following principe:
starting from a number of a seed nodes (sets) and expand
them into communities by examining and analyzing only
neighborhood of the seeds [16]. However, the choice of
the seed nodes plays a very important role to obtain a
high coverage of nodes and to produce clusters of nodes
with high performance.

• Agent-Based and Dynamical Algorithms: A range of dif-
ferent community detection methods have been proposed.
In particular, COPRA [17] and SLPA [18] extend LPA
to detection of overlapping communities by allowing
multiple labels to a node. A game-theoretic framework
is proposed in [19], in which each node is modeled as a
rational agent trying to optimize its own utility by joining
or leaving communities.

• Nonnegative Matrix Factorization: Another line of work
in addressing the overlapping community is based on
extensions of Nonnegative Matrix Factorization. It is a
feature extraction and dimensionality reduction technique
in machine learning that has been adapted to community
detection [20]–[22].

Our work is related to the second category of community
detection. The proposed declarative method follows a different
track by defining an alternative strategy for the detection
of overlapping communities. This complementary approach
follows from the need to satisfy the following features:

• Declarative: to support the high-level and natural model-
ing of community discovering tasks; that is, our approach

should closely correspond to the definitions of community
detection problems found in the literature;

• Generic: to be solver-independent, such that the best
SAT solving method can be selected for the problem
and data at hand. Supported methods should include both
general purpose solvers and specialized efficient mining
algorithms.

Our goal is to capitalize and extend the state-of-the-art com-
munity detection techniques, relying on cross-fertlization with
artificial intelligence. In addition, our approach is characterised
by being free of any parameters including the prior number of
the expected communities and independent of any additional
measures to decide the community structure.

III. PRELIMINARIES

A. Propositional Logic and SAT Problem

Let L be a propositional language defined inductively from a
finite set PS of propositional symbols, the boolean constants
> (true or 1) and ⊥ (false or 0) and the standard logical
connectives {¬,∧,∨,→,↔} in the usual way. We use the
letters x, y, z, etc. to range over the elements of PS . Formulas
of L are denoted by A,B,C, etc. A literal is a propositional
variable (x) of PS or the negation of a variable (¬x). The
two literals x and ¬x are called complementary. A clause is
a (finite) disjunction of literals, i.e., a1 ∨ . . . ∨ an. For every
propositional formula A from L, P(A) denotes the symbols of
PS occurring in A. A Boolean interpretation I of a formula
A is a truth assignement of PS , that is, a total function
from P(A) to {0, 1}. A model of a formula A is a Boolean
interpretation I that satisfies A, i.e. I(A) = 1. A formula A is
satisfiable if there exists a model of A. We denote by M(A)
is the set of all models of A.

As usual, every finite set of formulas is considered as the
conjunctive formula whose conjuncts are the elements of the
set. A formula in conjunctive normal form (CNF) is a (finite)
conjunction of clauses. The propositional satisfiability (SAT)
problem consists in deciding whether a given CNF formula
admits a model or not. This well-known NP-Complete problem
has seen spectacular progress these recent years.

SAT has seen many successful applications in various fields
such as electronic design automation, debugging of hardware
designs, artificial intelligence, and data mining. Several SAT
extensions have been proposed to deal with optimisation
problems. For example, the Max-SAT Problem seeks the
maximum number of clauses that can be satisfied. In this
paper, we consider one of these optimisation variants referred
to as Partial Max-SAT problem. Partial Max-SAT sits between
SAT and Max-SAT problems. While SAT requires all clauses
to be satisfied, Partial Max-SAT relaxes this requirement
by considering two kind of clauses, hard and soft. Partial
MaxSAT is the problem of finding an optimal assignment to
the variables that satisfies all the hard clauses, while satisfying
the maximum number of soft clauses.



B. Overlapping Community Detection
In this subsection, we discuss the classic problem of detect-

ing overlapping community structure in networks.
A network is a graph N = (V,E) where V is a set of

nodes and E ⊆ V × V is a set of edges. We denote by n
(respectively m) the number of nodes (respectively edges) in
N . For a node u ∈ V , we denote by Nu the set of neighbors
of u, i.e., Nu = {v ∈ V : (u, v) ∈ E}. A triangle in N is
a cycle of length 3. In this paper, we focus on undirected,
unattributed graphs. In graph theory, a community (or cluster)
is described as a set of nodes densely connected internally.
More formally,

Definition 1: (Community Partition) Let N = (V,E) be
an undirected graph. A community is a set of closely linked
nodes in N , and the community detection means to determine
all the communities.

In real-world networks, nodes are organized into densely
linked sets of nodes that are commonly referred to as network
communities, clusters or modules. Notice that communities
in networks often overlap as nodes can belong to multiple
communities at once. Network overlapping community de-
tection problem consists in dividing a network of interest
into (overlapping) communities for intelligent analysis. It has
recently attracted significant attention in diverse application
domains. Identifying the community structure is crucial for
understanding structural properties of the real-world networks.
Various methods have been proposed to identify the com-
munity structure of complex networks (see [4], [23] for an
overview).

Quality Metrics:
Several measures have been proposed for quantifying the

quality of communities in networks (see [24] for a comparative
study of quality measures). In this paper, we adopt three
popular metrics to assess the performance of our method:

Modularity. The most widely used metric for measuring the
quality of network’s partition into communities (without a
ground-truth) is Newman’s modularity function [25]. Mod-
ularity quantifies the community strength by comparing the
fraction of edges within the community with such fraction
when random connections between the nodes are made. Net-
works with high modularity have dense connections between
the nodes within communities but sparse connections between
nodes in different communities. We use the following equation
of modularity, an extension of Newman’s modularity func-
tion designed to support overlapping communities proposed
in [15]. For the given community partition of a network
N = (V,E) with m edges, an extended modularity EQ is
given by:

EQ =
1

2m

∑
C∈CN

∑
u,v∈C

1

OuOv

[
Auv −

dudv
2m

]
(1)

with CN the set of communities in N ; Ou the number of
communities to which the node u belongs and Auv is the
element of the adjacency matrix representing the network.

F1 score. Let N = (V,E) be a network, and Ĉ (respectively
C∗) the set of (respectively ground truth) communities associ-
ated to N . The average F1 score measure aims to quantify the

level of correspondence between C∗ and Ĉ. More precisely,
we need to determine which Ci ∈ C∗ corresponds to which
Ĉi ∈ Ĉ. The F1 score is defined as the average of F1
score of the best matching ground-truth community to each
detected community, and the F1 score of the best matching
detected community to each ground-truth community [20].
More formally, this function is defined as follows:

1

2

 1

|C∗|
∑

Ci∈C∗
F1(Ci, Ĉg(i)) +

1

|Ĉ|

∑
Ĉi∈Ĉ

F1(Cg
′
(i)
, Ĉi)

 (2)

where the best matching g and g′ is defined as follows:
g(i) = arg max

j
F1(Ci, Ĉj), g′(i) = arg max

j
F1(Cj , Ĉi), and

F1(Ci, Ĉj) is the harmonic mean of Precision and Recall.

Normalized Mutual Information. This metric adopts the
criterion used in information theory to compare the detected
communities and the ground-truth communities. Normalized
Mutual Information has been proposed as a performance met-
ric for community detection (see [12] for details). It provides
a real number between zero and one that gives the similarity
between two sets of sets of objects. The Normalized Mutual
Information is written as:

H(X) + H(Y )−H(X,Y )

(H(X) + H(Y ))/2
(3)

where H(X)(H(Y )) is the entropy of the random variable
X(Y ) associated to the partition C ′(C ′′), whereas H(X,Y )
is the joint entropy. This variable is equal 1 only when the
two partitions C ′ and C ′′ are exactly coincident.

IV. TRIANGLE-DRIVEN COMMUNITY DETECTION USING
SATISFIABILITY PROBLEM

A. Cohesive Subgraphs

A cohesive subgraph is a pivotal vehicle for the analysis of
massive graphs [26]. It has been used for finding communities
and spam link farms in web graphs, graph visualization, real-
time story identification, DNA motif detection in biological
networks, finding correlated genes, epilepsy prediction, to
name a few. The problem of mining cohesive subgraphs is
one of the typical graph mining tasks that has attracted a lot
of attention. The most basic, trivial subgraph, is the triangle.
Many social networks are abundant in triangles, since typically
friends of friends tend to become friends themselves [27], [28].
This phenomenon is observed in other types of networks as
well (biological, online networks etc.) and is one of the main
reasons which gave rise to the definitions of the transitivity
ratio and the clustering coefficients of a graph in complex
network analysis.

Inspired by these observations about triangle, we design
a novel framework which we call Cohesive Subgraph using
SAT problem. The main idea is to exploit triangle structure
to detect overlapping communities. The idea of using triangle
structure to obtain communities is not new. For instance, [29]
recently designed an algorithm based on triangle structure



to discover disjoints communities. In this paper, however,
we design a highly expressive framework for overlapping
community detection in complex networks.

The first step of our work is to propose a novel theoret-
ical concept of dense subgraph structure based on triangles
which we called Cohesive Subgraph where all triangles in the
subgraph are mutually neighborhood or neighborhood by tran-
sitivity (see Fig.1 for a visualized toy example). The intuition
behind our idea is the following: the larger the number of
triangles of a given node closes with its neighbors, the higher
the probability that there is a lot of connection between them
and therefore they form a community structure. Indeed, our
assumption relies on the idea that two neighborhood nodes
are more probable to belong to the same community, if they
belongs mutually to a large number of triangles so that the
mutual friendships between pairs of connected nodes in the
same community is maximized.

Moreover, the set of communities can overlap, for instance,
we can find nodes in several communities. We show later how
to extract nodes of each community. More formally, we will
start by the core idea of our contribution.

Let us start by some technical definitions. The reason for
which we give these notions in this section is to show that
using overlapping triangles can help to find dense structures
in large graphs.

Definition 2 (Neighborhood of a triangle): Let N = (V,E)
be an undirected network. We say that two triangles t1 and t2
in N are neighbors if t1 and t2 share at least one node. For
a triangle t, the set of its neighboring triangles is denoted by
Γ(t).

Example 1: Let us consider the network N = (V,E)
of Fig.1. For the triangle t = {1, 7, 8}, we have Γ(t) =
{{1, 8, 11}, {8, 9, 11}, {8, 9, 10}, {1, 2, 6}, {1, 2, 3}, {1, 2, 5},
{1, 3, 5}, {1, 3, 6}, {1, 5, 6}}.

Now, we are looking for neighbors of a given node forming
at least one triangle with that node. For that, let us first define
the neighborhood triangles of a given node as follows.

Definition 3 (Neighboring triangles of a node): Let N =
(V,E) be an undirected network and u a node s.t. u ∈ V . The
neighboring triangles of u, denoted by T (u), are the triangles
in the neighborhood of u.

We denote by Γ(u) the set of nodes formed by neighboring
triangles of u.

That is, we look for neighbors of the node u which are
connected to each other via triangles.

Proposition 1: Let N = (V,E) be an undirected graph
s.t. u ∈ V . Then, ∀t1, t2 ∈ T (u), t1 and t2 are mutually
neighbors.

Example 2: Let us consider again the network N = (V,E)
depicted in Fig. 1. Then, the neighborhoods of the node u = 8
are the following nodes: Γ(u) = {1, 7, 9, 10, 11}.

Now, on the basis of the definitions of neighborhood of
a triangle and neighboring triangles of a node, we define a
simpler topological structure and one that is more tractable and
can be used as a proxy for extracting overlapping communities
as follows.

Definition 4 (Cohesive Subgraph): Let N = (V,E) be an
undirected network. A cohesive subgraph N ′ = (V ′, E′) is a
subgraph of N such that ∀u ∈ V ′, T (u) 6= ∅ and for all two
triangles t1 and t2 in N ′, either t1 and t2 are neighbors (w.r.t
Definition 2), or t1 and t2 are neighbors by transitivity 1.

That is, a cohesive subgraph is a graph containing only
triangles mutually neighborhood or mutually neighborhood by
transitivity; and each node is contained within at least one
triangle in the graph. Notice that a cohesive subgraph aims
to capture the cohesion in social interactions in networks in
the light of triangles, since triangle connectivity is strictly
stronger than connectivity. Notice that in [30], Huang et al.
introduced a structure called k-truss community based on
adjacency between triangles. Such structure was defined as
the maximal k-truss subgraph 2 with an additional constraint
on edge connectivity, i.e., any two edges in a community either
belong to the same triangle, or are reachable from each other
through a series of adjacent triangles.

So, our principle of community discovery is to start with a
seed of well-connected nodes, here one unique initial node,
and expand the reachability of this node to include other
nodes, nodes that are connected to the seed node already in
the community. More precisely, given one node u we aim to
find the cohesive subgraph containing u, in which each node
is triangle connected with other nodes.

An important thing to note is that, the cohesive subgraph
detection task can be solved by modeling it as a propositional
satisfiability problem. This allows us to benefit from the
recent advances in SAT and its optimisation variants. Thus the
user specifies what the problem with the different constraints
required and a general purpose solver determines how to solve
the problem. This strategy is inspired by a recent work on
finding the best k-linked centred communities in a network
using SAT problem [31]. In the following subsection, we
introduce our SAT-based encoding, which enables to discover
the cohesive subgraphs as the set of overlapping communities
for a given large graph.

B. Discovering Cohesive Subgraph Community via SAT

In this subsection, we study how to process overlapping
communities on large networks. For this, we provide an
encoding of the problem of discovering cohesive subgraphs
using the propositional satisfiability problem. As mentioned
previously, we first design a simple node which is then
considered as a seed node in each cluster. Then, we find the
cohesive subgraph around this seed node. Let us note that by
translating the problem of overlapping community detection to
an equivalent SAT problem, we can directly benefit from the
recent tremendous advances in SAT, and the constant stream
of innovations in this extremely active research field.

In order to discover such cohesive subgraphs, we have to
use propositional variables that allow us to capture for each

1Two triangles t1 and t2 are neighbors by transitivity iff there exists a
triangle t3 s.t. t1 and t3 are neighbors and t2 and t3 are neighbors.

2A k-truss is the largest connected subgraph in which every edge is a part
of (reinforced by) at least (k − 2) triangles within the subgraph.



node the set of its neighborhoods, its neighboring triangles,
and so on. More precisely, for our SAT encoding we associate
each node u with a propositional variable denoted xu where
xu ∈ {0, 1}. The key idea is that the variables assigned to 1
represent the seed nodes, i.e., S = {u ∈ V | I(xu) = 1}.
We now describe our SAT-based encoding using such propo-
sitional variables.

Our SAT-based encoding consists of the following set of
constraints. Given a network N = (V,E), the first proposi-
tional formula expresses the fact that if a node u ∈ V is a
seed node (I(xu) = 1), then all the neighborhood of u can
not be a seed node.∧

u∈V
(xu →

∧
v∈V |v∈Γ(u)

¬xv) (4)

It is worth noticing that the constraint (4) can be expressed
by a set of binary clauses 3:∧

u∈V

∧
v∈V |v∈Γ(u)

(¬xu ∨ ¬xv) (5)

The second constraint allows us to force the selection of a
seed node for each cohesive subgraph. To achieve this, we use
the following formula:∧

u∈V

∨
v∈V |v∈Γ(u)

xv (6)

Obviously, the formula (4)∧ (6) may have many candidate
solutions (i.e. models). However, choosing an arbitrary model
do not always guarantee a best partition of a network into
communities. To alleviate this problem, we will consider
an objective function to be optimized (by minimizing) on
the space of solutions. Let us consider example in Fig.1 .
Minimizing the objective function leads to two communities
found inside the network and all triangles in each community
are mutually neighborhood or neighborhood by transitivity.
Then, our cohesive subgraph discovery optimization problem
can be formulated as follows:

min
∑
u∈V

xu subject to (4) ∧ (6) (7)

After finding the seed nodes, we still have to determine
whether a node u belongs to the cohesive subgraphs or not
depending on its connectivity to that seed nodes. To achieve
this, we use the following formula that assigns nodes of the
network to communities where they belong to, i.e., nodes
which are connected to each other via triangles.∧

u∈S

∨
v∈V |v∈Γ(u)

xv (8)

where S denote the set of seed nodes in G.
Proposition 2: If the constraints (4) ∧ (6) ∧ (8) are satisfied,

then for all u 6∈ S there exists v ∈ S s.t. u ∈ Γ(v).

3A binary clause is a clause formed with at most two literals.

Proposition 2 ensures that if (4)∧ (6)∧ (8) admits a model
I, then the nodes corresponding to the variables assigned to 1
({u ∈ V | I(xu) = 1}) are the seed nodes and the network can
be partitioned into |S| cohesive subgraphs. Also, Proposition 2
shows that if a node u is not a seed node then there is always a
seed node that covers this node. The communities can then be
constructed by finding the nodes neighborhood to each seed
node. Obviously, the formula (4)∧ (6)∧ (8) may admits many
candidate solutions (i.e. models).

Example 3: Let us consider again the undirected
network N = (V,E) depicted in Fig.1. Our SAT-
based encoding can lead to the following solution: I =
{¬x1,¬x2, x3,¬x4,¬x5,¬x6,¬x7, x8,¬x9,¬x10,¬x11}.
For that solution, S = {3, 8} are the seed nodes of the
cohesive subgraphs. After finding the seed nodes, we still
have to determine whether a node u belongs to the cohesive
subgraph or not depending on its seed node. So for that
solution, N can be partitioned into the two communities
C1 = {1, 2, 3, 4, 5, 6} and C2 = {1, 7, 8, 9, 10, 11}.

3 2

4

5 6

1

11

7 8

9

10

Fig. 1: A simple undirected network

C. Algorithms

This section is devoted to our SAT based overlapping
communities framework which is summarized by Algorithm
1 and Algorithm 2. More precisely, the first phase of our
approach is to detect the neighborhood triangles of each node
from the original network. To do so, Algorithm 1 iterates
through every edge (u, v) in the network and if there exits
nodes that are linked to the two endpoints for that edge, then
the two nodes u and v participate in some common triangles.
So, as a result, u will be part of the neighboring triangles of
v and v itself becomes part of the neighboring triangles of u.

Once we have the set of neighboring triangles of each node
of N , we construct the set of overlapping communities from
N as presented by Algorithm 2. To discover communities,
Algorithm 2 is based on propositional satisfiability. It takes as
input the network N and the set of neighboring triangles of
each node computed by Algorithm 1, and returns the set of
overlapping communities. Algorithm 2 proceeds as follows:
First, we generate the corresponding optimization problem
that can be represented as a Partial MaxSAT problem (line
1). Then, a state-of-the-art Weighted Partial MaxSAT solver



Algorithm 1: Neighboring Triangles Computation based
on Edge-Iterator

Input: A network N = (V,E)
Output: The set of neighboring triangles of u and v

1 for (u, v) ∈ E do
2 if Nu ∩Nv 6= ∅ then
3 Γ(u)← Γ(u) ∪ {v};
4 Γ(v)← Γ(v) ∪ {u};
5 end
6 end
7 return Γ(u),Γ(v)

WPM3 is used to get an optimal solution (i.e. model) I (line
2). Next, the seed nodes are determined from the obtained
model (lines 4-7). Using such seed nodes, the next step is
to build communities by finding the nodes that are neighbors
(according to Definition 3) of each seed node (lines 10-12).

Algorithm 2: CSSAT (Cohesive Subgraph Discovering
using SAT)

Input: A network N = (V,E), Γ(u) ∀ u ∈ V
Output: A set of overlapping communities C

1 Φ = encodeToPartialMaxSAT (N );
2 I = solve(Φ) ;
3 S ← ∅; C ← ∅;
4 for ux ∈ I do
5 if I(ux) == 1 then
6 Cu ← {u};
7 S ← S ∪ Cu

8 end
9 end

10 for Cu ∈ S do
11 for w ∈ Γ(u) do
12 Cu ← Cu ∪ {w}
13 end
14 C ← C ∪ Cu

15 end
16 return C

V. PERFORMANCE EVALUATION

A. Experiment Settings

In this section, we present an experimental evaluation
of our proposed approach. It was conducted on
nineteen networks that cover a variety of application
areas and are briefly described in columns 1 and 2
of Table I, II and III. All networks in Table I and
Table II have ground-truth communities. We have
also chosen some large networks (Facebook, DBLP,
Amazon, Youtube, Google, Stanford.edu, Notre
Dame, Arxiv-Condensed-Matter, High Energy
Physics, and Arxiv Astro Physics taken from
SNAP [32]) to show the scalability of our model.

We evaluate the performance of our approach by comparing
it with the following most prominent state-of-the-art commu-
nity detection algorithms: (i) Scalable Community Detection
(SCD) [29], (ii) Clique Percolation Method (CPM) [33], (iii)
Cluster Affiliation Model for Big Networks (BIGCLAM) [20],
and (iv) Detecting Highly Overlapping Communities with
Model-Based Overlapping Seed Expansion (MOSES) [34]. For
the CPM algorithm, we use the cliques of size equal to 4.

Our proposed method, referred to as CSSAT, was written
in Python. Given an input network as a set of edges, our
algorithm starts by generating the corresponding optimization
problem represented as a Partial MaxSAT problem. To solve
this problem, we consider the state-of-the-art Weighted Partial
MaxSAT solver WPM3 (best solver at the last MaxSAT com-
petition 4) [35]. As finding the optimal solution is NP-hard, in
our experiment, we consider the first solution (not necessarily
optimal) returned by the solver WPM3. For our experimental
study, all algorithms have been run on a PC with an Intel Core
2 Duo (2 GHz) processor and 2 GB memory. We imposed 1
hour time limit for all the methods. Last, we use the symbol
(-) in Tables I, II and III when the corresponding method is
not able to scale on the considered network under the time
limit.

B. Comparison with Baseline Algorithms

Results on ground-truth communities. After finding com-
munities in a given network, we gauge the performance of
each community that an algorithm has discovered and check
whether a ground-truth community has been successfully
identified. Table I and Table II summarize the evaluation
results, with F1 and NMI scores of all algorithms on each
network. Experiments show that our method outperforms every
baseline, in most cases, by an interesting margin as shown by
the average F1 Scores and the average NMI Scores reported
in the last line of Table I and Table II. Interestingly, it can
be seen that CSSAT produces more accurate average w.r.t.
the ground-truth setting than all the other baseline algorithms.
In terms of average F1 scores, CSSAT outperforms SCD
by 40, 90%, BIGCLAM by 85, 22%, MOSES by 24% and
CPM by 51.02%. In terms of NMI scores, we can see that
CSSAT achieves the best performance in 7 networks among
10 and with a higher margin, globally, for each network. More
precisely, notice that CSSAT outperforms CPM by 95, 97%,
BIGCLAM by 101, 03%, SCD by 41, 81% and MOSES by
54, 76%.

As a summary, the experimental results confirm that CSSAT
method achieves the overall best performance in terms of the
accuracy of the detected overlapping communities.
Results on modularity metric. Table III reports the per-
formance comparison between our CSSAT approach and the
considered methods in terms of modularity metric. We observe
that across all datasets and modularity metric, CSSAT yields
the best performance in 6 out of 9 networks. We also observe
that CSSAT gives an important improvement against the
baselines in five large networks High Energy Physics,
Facebook, Notre Dame, Stanford.edu and Google.

In terms of average performance, CSSAT outperforms
CPM by 57, 89%, BIGCLAM by 24, 62%, MOSES by
54, 76% and SCD by 5, 26%. On the Arxiv General
Relativity, Energy Physics Theory and Arxiv
Astro Physics datasets, our method remain relatively
competitive with the best baseline. A possible explanation

4http://maxsat.ia.udl.cat/introduction/



TABLE I: F1 Score results on ground-truth communities

Network nodes/edges SCD MOSES CPM BIGCLAM CSSAT
KARATE [36] 34/78 0.572 0.528 0.439 0.369 0.764
DOLPHIN [37] 62/159 0.308 0.331 0.325 0.206 0.425
RISK MAP [38] 42/83 0.680 0.067 0.120 0.594 0.841
PILGRIM [39] 34/128 0.360 0.780 0.667 0.537 0.839
BOOK [40] 105/441 0.320 0.405 0.485 0.201 0.394
RAILWAY [41] 301/1 224 0.326 0.419 0.344 0.390 0.560
FOOTBALL [40] 115/615 0.695 0.854 0.365 0.611 0.432
DBLP [32] 317 080/1 049 866 0.303 0.363 0.413 0.091 0.413
AMAZON [32] 334 863/925 872 0.383 0.472 0.402 0.153 0.482
YOUTUBE [32] 1 134 890/2 987 624 0.233 0.119 − 0.018 0.259
Average - 0.418 0.475 0.390 0.318 0.589

TABLE II: NMI Score results on ground-truth communities

Network nodes/edges SCD MOSES CPM BIGCLAM CSSAT
KARATE [36] 34/78 0.363 0.260 0.221 0.182 0.516
DOLPHIN [37] 62/159 0.144 0.163 0.175 0.081 0.201
RISK MAP [38] 42/83 0.558 0.055 0.030 0.427 0.724
PILGRIM [39] 34/128 0.468 0.575 0.546 0.376 0.641
BOOK [40] 105/441 0.199 0.155 0.273 0.105 0.153
RAILWAY [41] 301/1 224 0.093 0.157 0.132 0.138 0.391
FOOTBALL [40] 115/615 0.420 0.762 0.223 0.436 0.221
DBLP [32] 317 080/1 049 866 0.145 0.149 0.198 0.031 0.198
AMAZON [32] 334 863/925 872 0.157 0.221 0.201 0.032 0.210
YOUTUBE [32] 1 134 890/2 987 624 0.049 0.012 − 0.0006 0.050
Average - 0.275 0.252 0.199 0.194 0,390

TABLE III: Modularity Score results

Network nodes/edges SCD MOSES CPM BIGCLAM CSSAT
Arxiv-Condensed-Matter [32] 23 133/93 439 0.339 0.371 0.360 0.343 0.378
Arxiv General Relativity [32] 5 242/14 484 0.589 0.505 0.459 0.608 0.522
Energy Physics Theory [32] 9 877/25 973 0.423 0.374 0.291 0.355 0.382
Arxiv Astro Physics [32] 18 772/198 050 0.408 0.232 0.153 0.233 0.226
High Energy Physics [32] 12 008/118 489 0.231 0.279 0.262 0.294 0.300
Facebook [32] 4 039/88 234 0.433 0.325 − 0.391 0.486
Notre Dame [32] 325 729/1 090 108 0.401 0.421 0.439 0.381 0.497
Stanford.edu [32] 281 903/1 992 636 0.293 0.445 − 0.432 0.502
Google [32] 875 713/4 322 051 0.476 0.329 − 0.001 0.492
Average - 0, 399 0.364 0.266 0.337 0.420

for this phenomenon is that the WPM3 solver don’t return the
optimal solution for these datasets.

Evaluating scalability. Finally, we evaluate the scalability of
our community detection method by measuring the CPU time
(see Figure 2). Notice that our algorithm needs few seconds to
generate all communities for small networks such as Karate,
Dolphin, etc. From the results in Figure 2, it can be seen
that our algorithm takes few seconds (less than 200 seconds)
to generate all communities for all networks with a number
of edges less than 500 000. For all large networks having one
million of edges and more, our algorithm makes less than 1200
seconds to generate all communities.
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Fig. 2: Evaluating scalability for large graphs

VI. CONCLUSION

In this paper, we proposed a new framework for detect-
ing overlapping communities in real-world networks. Our



method is based on discovering clusters in networks based
on triangles to capture the cohesion in social interactions.
Then, we demonstrated that our problem can be expressed
as a Partial Max-SAT optimization problem. Our approach is
characterised by being free of any parameters including the
prior number of the expected communities and independent
of any additional measures to decide the community structure.
Experimental results showed that our approach outperforms
the state-of-the-art methods in accurately discovering network
communities. These performances are obtained while looking
for the first non necessarily optimal solution of the underlying
optimisation problem.

As a future work, we intend to develop a parallel version
to even improve the performance of our optimisation based
approach. Finally, we plan to extend our proposed framework
to deal with the problem of community search.

REFERENCES

[1] T. Guns, S. Nijssen, and L. D. Raedt, “Itemset mining: A constraint
programming perspective,” Artif. Intell., vol. 175, no. 12-13, pp. 1951–
1983, 2011.

[2] S. Gilpin and I. N. Davidson, “Incorporating SAT solvers into hierarchi-
cal clustering algorithms: an efficient and flexible approach,” in KDD,
2011, pp. 1136–1144.

[3] I. Davidson, S. S. Ravi, and L. Shamis, “A sat-based framework for
efficient constrained clustering,” in SDM, 2010, pp. 94–105.

[4] J. Leskovec, K. J. Lang, and M. W. Mahoney, “Empirical comparison
of algorithms for network community detection,” in International Con-
ference on World Wide Web, WWW, 2010, pp. 631–640.

[5] S. Fortunato, “Community detection in graphs,” Physics reports, vol.
486, pp. 75–174, 2010.

[6] G. Palla, I. Dernyi, I. Farkas, and T. Vicsek, “Uncovering the overlapping
community structure of complex networks in nature and society,” nature,
vol. 435, pp. 814–818, 2005.

[7] I. J. Farkas, D. Abel, G. Palla, and T. Vicsek, “Weighted network
modules,” New Journal of Physics, vol. 9, 2007.

[8] J. M. Kumpula, M. Kivela, K. Kaski, and J. Saramaki, “Sequential
algorithm for fast clique percolation,” Physical Review, vol. E 78, 2008.

[9] C. Shi, Y. Cai, D. Fu, Y. Dong, and B. Wu, “A link clustering
based overlapping community detection algorithm,” Data & Knowledge
Engineering, vol. 87, pp. 394 – 404, 2013.

[10] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities reveal
multiscale complexity in networks,” Nature, p. 761764, 2010.

[11] T. S. Evans, “Clique graphs and overlapping communities,” Journal of
Statistical Mechanics: Theory and Experiment, 2010.

[12] A. Lancichinetti, S. Fortunato, and J. Kertesz, “Community detection
algorithms: A comparative analysis,” New Journal of Physics, vol. 11,
2009.

[13] D. Jin, B. Yang, C. Baquero, D. Liu, D. He, and J. Liu, “A markov
random walk under constraint for discovering overlapping communities
in complex networks,” New Journal of Physics, vol. 5, 2011.

[14] A. Padrol-Sureda, G. Perarnau-Llobet, J. Pfeifle, and V. Muntés-Mulero,
“Overlapping community search for social networks,” in International
Conference on Data Engineering, 2010, pp. 992–995.

[15] H. Shen, X. Cheng, K. Cai, and M. Hu, “Detect overlapping and
hierarchical community structure in networks,” Physica A, vol. 388,
no. 8, pp. 1706–1712, 2009.

[16] I. M. Kloumann and J. M. Kleinberg, “Community membership identi-
fication from small seed sets,” in The 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, New
York, NY, USA - August 24 - 27, 2014, 2014, pp. 1366–1375.

[17] S. Gregory, “Finding overlapping communities using disjoint community
detection algorithms,” in International Workshop on Complex Networks,
2009, pp. 47–61.

[18] J. Xie, B. K. Szymanski, and X. Liu, “SLPA: uncovering overlapping
communities in social networks via a speaker-listener interaction dy-
namic process,” in IEEE International Conference on Data Mining,
2011, pp. 344–349.

[19] W. Chen, Z. Liu, X. Sun, and Y. Wang, “Community detection in social
networks through community formation games,” in International Joint
Conference on Artificial Intelligence, Barcelona, 2011, pp. 2576–2581.

[20] J. Yang and J. Leskovec, “Overlapping community detection at scale:
a nonnegative matrix factorization approach,” in ACM International
Conference on Web Search and Data Mining, 2013, pp. 587–596.

[21] H. Zhang, I. King, and M. R. Lyu, “Incorporating implicit link pref-
erence into overlapping community detection,” in AAAI Conference on
Artificial Intelligence, 2015, pp. 396–402.

[22] J. Yang, J. J. McAuley, and J. Leskovec, “Community detection in
networks with node attributes,” CoRR, vol. abs/1401.7267, 2014.

[23] S. Fortunato, “Community detection in graphs,” CoRR, vol.
abs/0906.0612, 2009.

[24] J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg, “Predicting
positive and negative links in online social networks,” in International
Conference on World Wide Web, WWW, 2010, pp. 641–650.

[25] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Phys. Rev. E, vol. 69, no. 2, p. 026113, Feb.
2004.

[26] W. Stanley and K. Faust, Social network analysis: Methods and appli-
cations. Cambridge university press, 1994.

[27] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “DOULION:
counting triangles in massive graphs with a coin,” in ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2009, pp. 837–846.

[28] H. Park, F. Silvestri, U. Kang, and R. Pagh, “Mapreduce triangle enumer-
ation with guarantees,” in Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowledge Management,
2014, pp. 1739–1748.
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