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The solution of the Helmholtz eigenvalue problem is considered through the use of the method of

the fundamental solutions. Taylor series of these solutions are employed to form a polynomial eigen-

value problem. The presented method differs from other methods such as the multiple reciprocity

method. Here, the Green’s function itself is expanded and no integration is performed. Results

on classical geometries (sphere, parallelepiped box and finite cylinder) demonstrate the accuracy of

the method for the determination of the eigenvalues with Neumann, Dirichlet and Robin boundary

conditions. Furthermore, the center of the Taylor approximation is shown to be adjustable, allowing

the method to be theoretically effective for any arbitrarily part of the eigenvalue spectra.

PACS numbers: 43.20.Ks, 43.55.Ka

Introduction

The characterization of acoustic cavities still represents a crucial aspect in many applications, from the design phase
to the challenges of renovation and acoustic comfort improvement. In the automobile industry, acoustic eigenvalue
analysis is routinely employed to have car interior resonances away from the vibration frequencies (engine, gearbox,
shaft etc.) [1]. The determination of the acoustic modes is usually performed with numerical methods, since no exact
solution exists when the studied structure has a complex geometry. The mesh generation of arbitrarily shaped cavities
could be time consuming, especially with the finite element method [2], which has been employed since decades for
determining the acoustic eigenvalues of irregularly shaped cavities [3–5]. The boundary element method (BEM) has
been also widely developed in this purpose [6–9] as this formulation reduces the problem’s spatial dimension by one.
Recently, new numerical methods have recently spawned a renewed interest in meshless (or called mesh-free) methods
such as the indirect Trefftz method [10], the smoothed particle hydrodynamics method [11], the radial basis function
collocation method [12], the method of fundamental solutions (MFS) [13]. These methods have been successfully
applied to the eigenproblems of acoustical cavities. Karageorghis et al. [14] employed the MFS to calculate the
eigenvalues of 2-D cavities and Chen et al. [15] applied the boundary collocation method with radial basis function
for acoustic eigenanalysis of 3-D cavities. For these two examples the eigenvalue parameter still embedded in the
resultant matrix system leads to a nonlinear eigenproblem. As a consequence, the extraction of the eigensolutions is
not straightforward and can lead to numerical spurious eigenvalues [16] or iterative solution schemes (with necessary
search interval, solution accuracy depending on the step size).
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In this paper, an eigenproblem formulation dedicated to 3-D acoustic cavities, based on the MFS and requiring the
polynomial approximation of the free-field Green’s function, is proposed. This method is truly meshless as elements
are not required for both interpolation and integration. Only a discrete set of nodes are used on the boundary of the
domain while a set of virtual sources surrounds the cavity. By employing the Taylor series of the Green’s function and
applying the Dirichlet, Neumann or Robin boundary conditions, polynomial eigenproblem are obtained. The detailed
description of this acoustic eigenvalue problem is shown in Section I, recalling the classical MFS and introducing its
formulation with the polynomial approximation of its kernel (eg. Green’s function). Three numerical examples are
shown in Section II: sphere with Dirichlet or Neumann conditions, rectangular parallelepiped with Dirichlet conditions
and finite cylinder with mixed boundary conditions. The last example reuses the sphere with Robin conditions.

I. PROBLEM FORMULATION

A. Equations of the Problem

The harmonic wave propagation problem is governed by the Helmholtz equation [17]

∆p(r) + k2p(r) = 0 r ∈ Ω , (1)

where ∆ is the Laplacian operator, p is the pressure amplitude at the point r, k = ω/c is the wave number with ω
the circular frequency and c the speed of sound through the fluid medium. The variables exhibit an implicit e−iωt

time dependence. This equation is satisfied in an interior domain Ω and subject to a homogeneous condition at its
boundary Γ of the form

a(r)p(r) + b(r)
∂p(r)

∂n
= 0 r ∈ Γ , (2)

where a(r) and b(r) are known complex-valued functions of r and n is the outward normal to the boundary at r.
The non-trivial solutions k∗ and p∗(r) are expressed as the eigenfrequencies and eigenfunctions. In this paper, four
different eigenproblems are considered:

• Dirichlet - a(r) = 1 and b(r) = 0,

• Neumann - a(r) = 0 and b(r) = 1,

• Robin - a(r)/b(r) = ikρc/Z,

• mixed boundary conditions - {a(r1) = 0, a(r2) = 1} and {b(r1) = 1, b(r2) = 0},

where r1 (resp. r2) is on the surface Γ1 (resp. Γ2) on which Dirichlet (resp. Neumann) conditions are located, with
Γ = Γ1 ∪ Γ2. The Robin boundary conditions is set in the context of an acoustic cavity covered by an absorbent,
locally reacting at r, with Z being the surface impedance.

B. The Method of Fundamental Solutions

The fundamental solution of the Helmholtz equation (1) is defined by [14]
(

∆+ k2
)

Gk(r, r
s) = −δ(r, rs) , (3)

where r
s are the coordinates of source points. The fundamental solution is then obtained as

Gk(r, r
s) =

eikx

4πx
, (4)

where x = |r− r
s| is the distance between the collocation point and the source. Using the MFS with a single-layer

potential approach, the field solution is assumed to be

p(ri) =
∑

j

ϕjGk(ri, r
s
j) , (5)

∂p(ri)

∂n
=

∑

j

ϕj

∂Gk(ri, r
s
j)

∂n
, (6)
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where ϕj is the intensity of the source point located at rsj . For Dirichlet boundary condition, Eq. (5) at ri is rewritten
as

∑

j

ϕjGk(ri, r
s
j) = 0 , (7)

where ri is located on the surface. This equation can be recast as a N×N linear system Uk {ϕ} = {0} where N is the
number of source points which is chosen equal to the number of collocation points. The Neumann eigenproblem can
be formulated with Eq. (6) in the same way. Also, for the mixed or Robin boundary conditions, Eq. (5) and Eq. (6)
(depending on the boundary condition applied at ri) are used to form a linear system of the same type.
In the context of finding the eigenfrequencies of acoustic cavities, the different linear systems are also nonlinear

eigenproblems for k being the eigenvalues as these equations have non-trivial solutions k∗p. The eigenfunctions of
Helmholtz equation (cf. Eq. (1)) could be easily evaluated with Eqs. (5) and (6).
MFS formulations have been successfully applied to the Helmholtz problem in domains with and without interior

holes [18], connected domains [19] and for mixed boundary conditions [20]. The direct determinant search method
and singular value decomposition techniques have been extensively employed to solve the resulting eigenproblem.
Recently, Reutskiy [21] proposed a new algorithm for which the eigenvalue problem is reduced to a sequence of
inhomogeneous problems. However, the solution procedures still involves an iteration process, requiring the system
matrix to be formed repeatedly and leading to poor results in the case of closely spaced frequencies. Using BEM,
many methods have been dedicated to the eigenanalysis of acoustic cavities [22] and some of them allow the direct
determination of natural frequencies as the internal cell method [23], the dual reciprocity method [24], the particular
integral method [25–27], the multiple reciprocity method [6] and its equivalent series expansion method [28]. This last
is of particular interest here as the series expansion technique is the core of the proposed method. The main difference
is that the expansion is performed formally on x and not on the product kx. Furthermore, using MFS kernels, the
matrix expansion requires no integral evaluation.

C. Series Expansion of the Fundamental Solutions

First, we recall Taylor’s development of the exponential function centered at γ as

f(x) = eix = eiγ
∞
∑

m=0

im

m!
(x− γ)m . (8)

From Eq. (8) and using substitution in series for k, the Green function is rewritten as

Gk(x) =
eiγ

4π

∞
∑

m=0

km
im

m!

(x− γ/k)
m

x
. (9)

It is worth noting that using this substitution with γ �= 0 divides the original radius of convergence by |k|. From
Eq. (9), the MFS kernel for Neumann boundary condition is easily computed via the relation

∂Gk(x)

∂n
=

Gk(x)

x

(

ik −
1

x

)

(r− rs) · n . (10)

The main idea of our approach for solving the Helmholtz eigenvalue problem is to obtain a polynomial eigenproblem
formulation with the approximation of the MFS kernels (Eq. (9) and (10)). The easiest way to achieve an efficient
formulation is to truncate the previous series at order α and set γ = 0 so that the three different boundary conditions
linear systems can be immediately recast as

α
∑

m=0

kmAm {ϕ} = {0} , (11)

where Am are matrices containing terms relating to Eq. (9) or Eq. (10), evaluated for each field point r and source
location rs. Using γ = 0 is not the only possible choice to obtain a polynomial eigenvalue problem (PEP). Indeed,
truncating Eq. (9) at order α and using the Newton’s binomial series gives

Gk(x) =
eiγ

4π

α
∑

m=0

(

kmxm−1

[

α−m
∑

n=0

im−n

m!n!
γn

])

. (12)
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Using polynomial approximations to solve nonlinear eigenvalue problems is not new. In particular, for boundary
integral formulations of partial derivative equation eigenvalue problems, the use of Taylor approximations is a well-
known approach [6, 28, 29]. However, and to the authors’ best knowledge, such methodology has not yet been
employed with the MFS formulation and for this particular context. Furthermore, the aforementioned Taylor series
can be centered ad lib.. This allows the application of this method over the frequency band of interest, while
maintaining a relatively low order polynomial.

D. Linearization of the Polynomial Eigenproblem

A usual way of solving PEP is to use a matrix augmentation procedure to transform Eq. (11) into an equivalent
generalized eigenproblem (GEP). Standard techniques could be applied to solve this linear eigenvalue problem. The

linearizations most commonly employed are the companion forms: for P(k) =
m
∑

i=0

kiAi, one of these companion forms

is [30]

L(k) = k

⎡

⎢

⎢

⎢

⎢

⎣

Am 0 . . . 0

0 In
. . . 0

...
. . .

. . .
...

0 . . . 0 In

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

Am−1 Am−2 . . . A0

−In 0
. . . 0

...
. . .

. . .
...

0 . . . −In 0

⎤

⎥

⎥

⎥

⎥

⎦

. (13)

An important issue for these linearizations is its conditioning. It is now known that different linearizations for a
given PEP can have very different conditioning [30], so that numerical methods may produce rather different results
for each companion form. Two key indicators must be considered with care to get low forward errors: the matrices
condition number and the backward error. The backward error of k∗ for P and its companion linearization L are only
of similar value if

‖Am‖ ≈ · · · ≈ ‖A0‖ ≈ 1 . (14)

Same constrain applies if considering matrix conditioning. So, in order to get a robust solution [31], a basic norm
balancing procedure is employed, with

P̃ (µ) = β1P (β2k) . (15)

The choice of β2 = (‖A0‖ / ‖Am‖)1/m can be shown [31] to minimize the scaling of the eigenproblem defined by

Eq. (15). Furthermore, and to achieve Eq. (14), β1 is chosen as (max ‖Ai‖)
−1

or
∑

i

‖Ai‖ /
∑

i

‖Ai‖
2
. Other im-

provements on the condition number could be performed by diagonal scaling. In this work, no iterative refinement
is done to improve backward error so the results shown in the following section are the output of the polyeig func-
tion implemented in MATLAB which uses a variant of linearization defined by Eq (13), on the PEP reformulated
by Eq. (15). This linearization can be directly derived from the companion form family proposed by Antoniou and
Vologiannidis [32]. Following Peters et al. [9], construction of symmetric matrices is possible if considering energy
quantities. In this case, structure preserving linearizations [33, 34] should be rather used.

II. NUMERICAL INVESTIGATIONS

In this section, some results issued from the above method, called the method of expanded fundamental solutions
(MEFS), are presented. The first tested geometry is a sphere. The second is a parallelepiped box. Both bodies have
separable geometries for which analytic solutions to the Helmholtz eigenvalue problem are available [17].
The full set of solutions of the GEP associated to the companion form (cf. Eq. (13)) contains the approximations

to the true eigenvalues of the Helmholtz problem. Because of Eq. (11), these approximations tend to have small
imaginary parts. From the results shown in this section and for sake of clarity, the imaginary part is not shown when
below 0.2% of the real component. The other eigenvalues obtained have significant imaginary parts and hence they
can be ignored from the true eigenvalues.
MEFS principles reveal that error is driven by four key parameters:



• surface nodes density,

• distances between nodes and MFS sources,

• order α of the Taylor series,

• choice of the center of expansion γ.

Beyond the error induced by the method itself, solving with confidence the PEP is predominant. As stated in previous
section, PEP issued from this approach can be treated in different ways. To this end, one may also consider a contour
integral method [38] in order to avoid the linearization. Here, no particular structure of the PEP matrices is assumed.
The results shown in this section prove that a matrix scaling procedure is sufficient to obtain accurate PEP solutions
for regular geometries, even if a non-optimal linearization is used.
For the numerical investigations performed, the MFS sources are distributed on a sphere of radius rMFS = 1.5× r0

centered at the geometrical origin of the tested structures (where r0 is a typical length), with N well-separated
sources obtained using a centroidal Voronoi tessellations procedure [35]. Obviously, setting MFS sources location
independently of the geometry to be treated is not an optimal choice, as the distances between sources and surface
nodes define, with α, the range of validity of the computed eigenvalues. With this arbitrarily placement of the virtual
sources, the focus is willingly set to the parameter α for the following results. Further works are planned to give this
method its full theoretical background.
For the Neumann boundary condition, normals at nodes are needed. In the following tests, these nodes are computed

through a ball pivoting method [36] involving two key steps. The first step is the determination of a pseudo-mesh
consisting of triangular elements with their outward normals. Then, for each node, normals at connected triangles
are weighted (with node distance) and averaged to give the normal estimation at node.

A. Sphere

This test consists on a sphere of radius r0. Nodes determination at its boundary are performed through the
triangulation of an icosahedron in order to create a geodesic sphere of different densities. Two densities are considered:
the first consists of 42 nodes corresponding to an inter-nodes distance d = 0.5646× r0 and the second has 92 nodes
with d = 0.3625 × r0. The Dirichlet (resp. Neumann) eigenvalues for this geometry are the zeros of jl (k) (resp.
j′l (k)), the spherical Bessel function of order l. Results for both boundary conditions and γ = 0 are shown in
Tables I and II (zero Hz modes are not shown, being always smaller than 1e − 13). For the Dirichlet study, the two

TABLE I: Sphere test problem - Dirichlet eigenfrequencies (r0 × k∗)

Mode MEFS Theory

num. 42 nodes 92 nodes

α = 30 α = 45 α = 60 α = 30 α = 45 α = 60

1 3.1416 3.1416 3.1416 3.1416 3.1416 3.1416 3.1416

2 4.4998 4.4946 4.4946 4.5001 4.4934 4.4934 4.4934

3 – 5.7583 5.7600 – 5.7634 5.7634 5.7634

4 – 6.2825 6.2828 – 6.2834 6.2831 6.2831

5 – 6.9630 6.9821 – 6.9650 6.9880 6.9879

6 – – 7.7776 – – 7.7248 7.7252

results for the α = 60 cases of Table I are displayed in Fig. 1 (only the positive quadrant is displayed). Effects of
nodes density is clearly visible for N = 42. Higher eigenfrequencies are badly recovered despite the fact that they
lie in the radius of convergence of the series. Indication on method accuracy in term of mesh criterion (i.e. node
density) is also shown in Fig. 1, where 3 nodes per wavelength ensure a sufficient discretization of the sphere surface:



from r0 × |k1| (approx. 2.7 nodes per wavelength), multiple modes are roughly recovered but above, modes become
indistinguishable. Nevertheless, it must be recalled that the increase of surface points density is only useful if α and
rMFS are set accordingly.
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FIG. 1: Distribution of the Dirichlet eigenvalues for the sphere with α = 60 and for 2 nodes densities

TABLE II: Sphere test problem - Neumann eigenfrequencies (r0 × k∗)

Mode MEFS Theory

num. 42 nodes 92 nodes

α = 30 α = 45 α = 60 α = 30 α = 45 α = 60

1 2.0835 2.0835 2.0835 2.0819 2.0819 2.0819 2.0816

2 3.3453 3.3455 3.3455 3.3411 3.3411 3.3411 3.3421

3 4.4671 4.4976 4.4976 4.4985 4.4934 4.4934 4.4934

4 – 4.5318 4.5318 – 4.5151 4.5151 4.5141

5 – 5.5896 5.5783 – 5.6344 5.6493 5.6467

6 – 5.8207 5.9311 – 5.9424 5.9408 5.9404

As expected, the order of series truncation α is of prior importance for the range of accuracy of the proposed method.
In Table I, when the series is centered at 0, α = 30 gives only the two first eigenvalues while doubling this order gives
accurate results for the six first expected values (at least). Also, reliable estimations of out of range eigenvalues can be
obtained with the arbitrarily centering of the Green’s function expansion. We define q satisfying γ = qπ for the results
shown in Table III and Fig. 2 illustrates the use of this centering for the Dirichlet case and N = 42. When compared
with higher order results (see N = 42 and α = 30 of Table I), third and fourth eigenvalues can be recovered, with
time and memory saving costs. Nevertheless, and as the radius convergence of series is translated, lower eigenvalues
are attended to be deteriorated to benefit others. Furthermore, and as illustrated by the q = 3 case of Fig. 2, results
near the radius of convergence are also linked to the nodes density. This can be harmful when dealing with multiple
eigenfrequencies, for example when attempting to determine the fifth eigenvalue with this particular configuration.
Indeed, a cluster of points with a significant dispersion around the expected value is observed. However, optimal
eigenvalue (lowest imaginary part) in this area is found equivalent to the fifth eigenvalue obtained with N = 42 and
α = 45 (cf. Table I).



TABLE III: Sphere test problem - Dirichlet eigenfrequencies (r0 × k∗) with N=42 and α = 20

Mode MEFS Theory

num. q = 0 q = 1 q = 2 q = 3

1 3.1455 3.1450 3.1450 3.1603 -i0.07 3.1416

2 – 4.4937 4.4934 4.4937 4.4934

3 – – 5.7428 5.7601 5.7634

4 – – 6.2798 6.2826 6.2831
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FIG. 2: Distribution of the Dirichlet eigenvalues for the sphere (N = 42 nodes and α = 20) and for two values of q

B. Rectangular parallelepiped

The first simulation case involves determination of the eigenmodes of a rectangular parallelepiped with Dirichlet
conditions. The dimensions are chosen as (0.9 × 1 × 1.1) × r0 in order to produce a dense distribution of the first
eigenvalues. 172 nodes are used to discretize the parallelepiped. Table IV illustrates the MEFS reliability in this
context and its flexibility as eleven modes are well evaluated for q = 2 and with only a 40th order polynomial for the
Green’s function approximation (thus ending to a GEP of order 6880 through linearization).

C. Cylinder with mixed boundary conditions

The problem is now a cylinder of radius 0.4 × r0, and height 2 × r0 with mixed boundary conditions (Neumann
condition everywhere except at one end cap where Dirichlet condition is assumed). The surface is discretized with
140 nodes. Various configurations of the series parameters (α and q) are used and the MEFS performance is shown in
Table V. Previous considerations obtained from the two first study cases are also observable, and the results testify
of the MEFS efficiency to deal with mixed boundary conditions.



TABLE IV: Rectangular parallelepiped test problem - Dirichlet eigenfrequencies (r0 × k∗) with N = 172 and q = 2

Mode MEFS Theory

num. α = 22 α = 40

1 5.4964 5.4964 5.4965

2 7.3937 7.3947 7.3947

3 7.7308 7.7345 7.7343

4 8.1247 8.1712 8.1710

5 – 9.1811 9.1810

6 – 9.5512 9.5517

7 – 9.7706 9.7706

8 – 9.8170 9.8170

9 – 10.4452 10.4483

10 – 10.9962 10.9929

11 – 11.1890 11.1836

TABLE V: Cylinder test problem - Computed mixed eigenfrequencies (r0 × k∗) with N = 140

Mode MEFS Theory

num. α = 20 α = 30 α = 40

q = 0 q = 3 q = 0 q = 2

1 0.7945 0.8691-i0.06 0.7945 0.7945 0.7854

2 2.3589 2.3523 2.3589 2.3589 2.3589

3 – 3.9333 3.9293 3.9292 3.9270

4 – 4.6121 4.6943 4.6941 4.6695

5 – – 5.1453 5.1722 5.1710

6 – – – 5.5007 5.4978

D. Sphere with Robin boundary conditions

This last application concerns the sphere cavity described in the previous section. Here, we consider Z = ρc on the
entire sphere surface so the boundary conditions is rewritten as

ikp(r) +
∂p(r)

∂n
= 0 r ∈ Γ . (16)

Using this equation with Eqs. (9) and (10), complex eigenfrequencies must occur. Thereby, and in order to identify
the original problem’s eigenvalues, using a threshold on the imaginary part is no longer a reliable technique. One
possibility is to consider that the expected eigenfrequencies are independent of the MFS radius. Thus, moving this
radius should reveal these invariants. Figure 3 illustrates the spotting of the eigenfrequencies of the Helmholtz problem



with Robin boundary condition, using two different locations of MFS sources. Although not being the most optimal
method in this case, satisfactory results are obtained (references values given by the FEM solver COMSOL).
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FIG. 3: Distribution of the Robin eigenvalues for the sphere (N = 42 nodes and α = 40) and for two values of rMFS

III. CONCLUSIONS

A meshless method for the Helmholtz eigenvalue problem is presented and tested for different cavities. This method
is based on the polynomial approximation of the fundamental solutions for the 3D Helmholtz equation. A norm
balancing procedure is employed on matrices of the resulting polynomial eigenproblem, then this last is linearized.
The results show the reliability of the proposed method with convergence to the exact solution as the number of
nodes and the accuracy of the polynomial approximation increase. Furthermore, the present paper demonstrates
the possibility for this approximation to be centered on a selected range of sought eigenvalues. Mixed boundary
conditions are easily handled by the MEFS and its extension to Robin boundary conditions is possible, although
the interpretation of results can be difficult. A sorting scheme to identify physical eigenvalues has been proposed.
Nevertheless, removing spurious modes has to be one field of further research. Also, no particular care was provided in
this paper on virtual source locations. Indeed, the determination of the number of virtual sources and their location
deserve sophisticated numerical procedures [37]. Here, the virtual sources are set to obtain matrices conditioning
good enough to effectively solve the PEP. Additionally, the results show that a basic norm balancing procedure of the
matrices is sufficient to ensure the robustness of the MEFS, at least for the investigated problems. Other techniques
as diagonal scaling of coefficient matrices or backward error improvement by iterative refinement can be considered
in order to enhance the accuracy of the computed eigenvalues. Other eigensolvers, which prevent the inflation of the
matrix dimension, must be also investigated. Focusing only on eigenvalues of physical interest, the contour integral
method [38, 39] is a potential candidate for the range of applications handled by the MEFS.
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