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The set of novelties introduced with the SAT solver Glucose is now considered as a

standard for practical SAT solving. In this paper, we review the different strategies and
technologies added in Glucose over the years. We detail each technique and discuss its

impact on the final performances reached by Glucose. We also come back on one of the
main developments of the solver over the very last years: its efficient parallelization. We

extensively tested different versions of Glucose and Syrup (its parallel version) on all the

benchmarks since 2011. By including, as a reference, the SAT solver Lingeling (and its
parallel version Plingeling), we show that Glucose and Syrup are significantly faster than

other solvers, even if they can solve fewer instances.

1. Introduction

The quest for practical solving of SAT formulas has a number of milestones, be-

ginning in the early sixties with the Davis-Putnam-Logeman-Loveland procedure, a

systematic backtrack-search algorithm over partial solutions (DPLL). In the early

2000’s, with the introduction of CDCL (Conflict-Driven Clause Learning) algo-

rithms, a major breakthrough was reached even if the CDCL paradigm, by its

own, would probably not have been sufficient to demonstrate such an impressive

progress. A number of additional ingredients are mandatory to unleash the full

power of CDCL approaches. Even if the theoretical reasons behind the practical

success of SAT solvers are largely unclear, we know in practice what ingredients are

needed, and how they must be incorporated in any SAT solver targeting application

instances.

All the following data structures and algorithms will be formally defined later.

Nevertheless, let us introduce here a number of intuitions behind each CDCL compo-

nent. By definition, the first cornerstone of any CDCL algorithm is conflict analysis

(described in the next section) 53. However, it is essential to build the solver on

top of the 2-Watched Literal scheme, that allows a very efficient BCP (Boolean

Constraint Propagation) thanks to a cheap and lazy way of handling formula sim-

plifications under partial assignment and backtracking 42. This data structure has

a main drawback: the search for a solution is partially blind, and only unit and
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empty clauses are detected. This is certainly one of the reasons VSIDS was in-

troduced 54,21. This heuristics is only updated during conflict analysis and thus

perfectly fits the above constraints (it is state-independant and thus does not need

any effort after assignments/unassignments). Conflict Analysis, 2 Watched-Literal

and VSIDS are still the most important ingredients of any CDCL implementation.

Later, it was stressed out how important the restart policy was. If restarts were

firstly introduced to fight the heavy tailed phenomenon observed on DPLL imple-

mentations 26, the very fast restart policies (following for instance the Luby series
32), used with the phase caching scheme 47 was probably one of the most important

improvements since the first release of Minisat21, the reference implementation of

the CDCL algorithm.

With glucose, we proposed to renew the vision of CDCL solvers. Instead of

seeing them as an improvement of a DPLL search, we saw them as clauses pro-

ducers. For this, we introduced a new quality measure, called LBD (Literal Block

Distance) that has been proven to be very informative, in practice, to predict clauses

usefulness. In most of the cases (for so-called ”Industrial” problems) it seems crucial

to aggressively remove many learnt clauses, even during the first conflicts (up to

95% of them). Two factors seem to play a crucial role in managing the learnt clause

database: keeping as few clauses as possible ensures a very fast BCP, and remov-

ing bad clauses allows to guide the solver search around a shorter UNSAT proof.

Moreover, the restart policy introduced in glucose, and based on the quality of

recently learnt clauses, has also been proven to be very efficient in practice.

In this paper, we review the set of ingredients that were typically introduced

in the series of glucose releases and try to propose some explanations of its effi-

ciency. We particularly focus on identifying the impacts of these ingredients on our

solver performances. We also develop the ideas behind syrup, the parallel version

of glucose, that uses a special data structure with its associated policy for sharing

clauses between cores.

We also show, in this paper, that besides the fact that glucose does not in-

tegrate inprocessing and sophisticated preprocessing techniques, it is still one of

the best SAT solvers, even on recent problems, as soon as CPU time is taken into

account. When using Allen van Gelder ”careful ranking” 23 used in the first cycle

of competitions (from 2002 to 2007, see http://www.satcompetition.org/), glu-

cose and syrup are clearly the solvers of choice: they are faster, even if they can

solve fewer problems.

The paper is organized as follows. After a necessary recall of the CDCL algo-

rithm, we introduce, in Section 3, the notion of Literal Block Distance, on top of

which all the ingredients of Glucose are built. Its usefulness in detecting good clauses

is also discussed. In Section 4, we describe the dynamic restart strategy introduced

in glucose, which is probably the second important novelty of our solver. In sec-

tion 5 we introduce the notion of lazy exportation/importation of clauses, which is

one of the signatures of our parallel version of glucose, called syrup. In Section 6

describes the special data structure used for clauses when incremental SAT solving
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is used with glucose. At last, Section 7, we extensively test 4 versions of glucose,

syrup, and lingeling/PLingeling on all the problems of the SAT Competition

since 2011. The last section of this paper concludes it.

2. Preliminaries

Before focusing on the novelties introduced in glucose, let us recall here some

basic notations. A propositional formula in Conjunctive Normal Form (CNF) is a

conjunction of clauses (interpreted as a set), where a clause is a disjunction of literals

(interpreted as a set). A literal is a propositional variable x or its negation ¬x. A

unit clause is a clause with only one literal. The empty clause, denoted ⊥, is false,

while the empty formula, denoted > is true. An interpretation I of a propositional

formula Σ associates to some variables x of the formula a value I(x) equal to true

or false. An interpretation is complete if all variables of the formula are interpreted;

it is partial otherwise. An interpretation can also be represented as a set of literals

(literals that are assigned to true). A model of a formula Σ is an interpretation that

satisfies the formula, i.e., that satisfies all clauses of the formula. The SAT problem

is the decision problem that consists in verifying if a formula Σ in CNF has a model.

The resolution rule is essential in SAT. Two clauses c1 and c2 can be resolved

if and only if it exists a unique literal `, such that ` ∈ c1 and ¬` ∈ c2. Clause

(c1−{`})∪ (c2−{¬`}) is called the resolvent in ` of c1 and c2. It is denoted c1⊗` c2.

Let us just notice that adding resolvents of clauses that are part of a given formula

does not change its satisfiability.

2.1. Conflict Driven Clause Learning solvers

When they were introduced fifteen years ago 42,21, CDCL SAT solvers (Conflict

Driven Clause Learning) were presented as an extension of the DPLL algorithm 20

with additional features such as clause learning 53,54, based on top of an efficient

data structure (2 Watched Literals) for Unit Propagation detections, giving an

efficient Boolean Constraint Propagation engine (BCP). Now, it is well admitted

that they have to be seen as a mix of backtrack algorithms and resolution engines.

Furthermore, is has been proved that CDCL SAT solvers are more powerful than

DPLL ones, i.e. there exist formulas on which the proof (the proof can be seen as a

special trace of solver’s run) can be polynomial (w.r.t. to the number of variables)

for CDCL solvers whereas, it is necessary exponential for DPLL ones. The opposite

is not true 11,49.

We recall Algorithm 1 an overview of a typical CDCL solver, focusing on the

necessary notions needed to understand glucose in the later. For more details,

the reader can refer to 40. A typical branch of a CDCL solver is a sequence of

decision/propagations repeated until it reaches a conflict, i.e. the empty clause. Each

decision literal (line 20-22) is assigned at a decision level (d), literals that are implied

(by unit propagation, line 6) by this decision have the same level (the notation `@d

denotes that literal ` is assigned at level d). Then, an interpretation can be written
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I = {〈`k11
@1, . . . `k1i

@1〉, 〈`k21
@2, . . . `k2j

@2〉 . . . 〈`kd1
@d, . . . `kdt

@d〉}. Symbols 〈
and 〉 partition I with respect to the different decision levels and literals `k11

, `k21
,

. . . are the decision literals of each level. If all variables are assigned, then a model is

found (line 17). Each time a conflict is reached by unit propagation (clause c is the

empty clause, line 6-7), a nogood is computed, line 9 (usually using the First Unique

Implication Point principle 54), together with a correct backtrack level (bl). The

nogood is in fact a simple clause derived using a sequence of resolutions (described

precisely later). It provides an explanation for the conflict and has special properties

such as empowerment 48. Indeed, it provides a new unit literal (according to the

partial assignment) that can be propagated at decision level bl. So, a backtrack

(sometimes called backjump) is performed (last sequences of literals are deleted

from the interpretation I) (line 14). Note that, if the nogood is the empty clause,

then the unsatisfiability of the formula is proven (line 11). Once in a while, restarts

are fired (line 13), i.e., the interpretation is cleared (except from literals propagated

at decision level 0). We will discuss restart strategies in Section 4. Finally, and it is

one of the main novelty introduced in glucose, periodically, some learnt clauses,

useless ones, are removed from the database (line 19). We will come back on this

step Section 3.

Let us illustrate one step of this algorithm with a small example. Let Σ be a

formula containing clauses:
c1 = x1 ∨ x4 c2 = x1 ∨ ¬x3 ∨ ¬x8 c3 = x1 ∨ x8 ∨ x12
c4 = x2 ∨ x11 c5 = ¬x3 ∨ ¬x7 ∨ x13 c6 = ¬x3 ∨ ¬x7 ∨ ¬x13 ∨ x9
c7 = x8 ∨ ¬x7 ∨ ¬x9 c8 = ¬x1 ∨ ¬x12 ∨ x2 ∨ x7

Suppose function pickBranchLit chooses literal ¬x1 as the first decision literal.

Then, Ip = {〈¬x1@1, x4@1[c1]〉}. Indeed, since x1 is false, c1 propagates x4 to true

(this is the goal of the function unitPropagation, x4 must be true in order to

satisfy c1). Furthermore, we store the reason of the propagation inside the partial

interpretation (here the clause c1, inside brackets). Note that, of course, the deci-

sion literal has no reason (reasons are unisatisfied clauses). At decision level 2, the

literal x3 is chosen. At decision level 3 it is the literal ¬x2. Then, the partial inter-

pretation is {〈¬x1@1, x4@1[c1]〉, 〈x3@2,¬x8@2[c2], x12@2[c3]〉, 〈¬x2@3, x11@3[c4]〉}.
Finally, if the next decision literal is x7, then, the solver reaches a con-

flict. Indeed, the following propagations are added to the partial interpretation:

〈x7@4, x13@4[c5], x9@4[c6],¬x9@4[c7]. One tries to assign x9 to values true and

false. The conflict clause (clause c in algorithm 1) is c7.

The function conflictAnalysis produces a sequence of resolutions starting

from the variable in conflict (x9) and using clauses that are reason of previous

propagations. Then, the following resolutions are done (note that only literals that

are part of the intermediary clauses are used in this process):

• d∗ = c7 ⊗x9
c6 = ¬x3 ∨ x8 ∨ ¬x7 ∨ ¬x13

• γ = d∗ ⊗x13
c5 = ¬x3 ∨ x8 ∨ ¬x7
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Algorithm 1: CDCL solver

Input: Σ une formule CNF

Output: SAT ou UNSAT

1 Ip = ∅ ; /* interpretation */

2 d = 0 ; /* Ddeision Level */

3 nbc = 0 ; /* conflict number */

4 Γ = ∅ ; /* set of learnt clauses */

5 while (true) do

6 c = unitPropagation(Σ ∪ Γ,Ip);

7 if (c 6=null) then

8 nbc = nbc + 1 ; /* new conflict */

9 γ =conflictAnalysis(Σ ∪ Γ,Ip,c);

10 bl = ComputeBacktrackLevel(γ,Ip);

11 if (γ = ⊥) then return UNSAT;

12 Γ = Γ ∪ {γ};
13 if (restart(nbc)) then bl = 0;

14 cancelUntil(Σ ∪ Γ,Ip,bl); /* update Ip */

15 d = bl;

16 else

17 if (all variables are assigned) then

18 return SAT;

19 if (timeToReduce(nbc)) then reduceDB();

20 ` = pickDecisionLiteral(Σ ∪ Γ);

21 d = d+ 1;

22 Ip = Ip ∪ {〈`@d〉};
23 end

The clause γ is the first clause (during conflict analysis) containing only one

literal from the last decision literal (here literal ¬x7). This clause is added to the

learnt clause database. This is the First UIP (Unique Implication Point) scheme 54,

that can be formulated using a implication graph. It has to be noticed that all in-

termediary clauses derived (here clause d∗) before reaching the FUIP clause are not

stored in the database. As you can see, this clause is falsified since level 2. It is clear

that, if we had this clause before performing the sequence of decision/propagations,

we should have propagated ¬x7 at decision level 2 (using this clause as reason).

Thus, the backtrack level is set to 2, the partial interpretation Ip is reduced ac-

cordingly, and the propagation function can be called again. At the end, we have

Ip = {〈¬x1@1, x4@1[c1]〉, 〈x3@2,¬x8@2[c2], x12@2[c3],¬x7@2[γ] . . .〉}.
It is very important to note that this learning process is the key point of CDCL

solvers. At each conflict (typically more than 5,000 times per seconds) the algorithm

adds only one new clause, but derived by many resolutions steps (sometimes more
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than hundreds).

In a typical CDCL implementation, the main effort is spent in the function

unitPropagation. It is thus crucial to be able to detect unit clauses as efficiently

as possible. To this end, a data structure called 2-watched scheme 42 is commonly

used. For a given clause, two non falsified literals are the witnesses that this clause

is at least binary (or satisfied). Each time one of the witnesses is falsified, the

propagation engine tries to find a new witness to replace it. If none is found, then

the clause is unit or empty (depending on the value of the other witness). This

data structure is very efficient for mainly two reasons. First, it is just needed to

update the clauses in which a newly falsified literal is one of the two witnesses

and, second, touched clauses during propagations do not need to be touched again

during backtrack. Thus, this last operation is almost free (it is just needed to update

variable values).

3. Literal Block distance

3.1. Motivations

Given the high learning rate of CDCL solvers (they typically learn more than

5,000 clauses per second, and more than 15,000 on some particular problems), the

question of managing the learnt clauses database was identified since their early ages

(first implementations were typically consuming too much memory). However, the

first answer was just about trying to contain the combinatorial explosion by simply

periodically cleaning the learnt clause database. The policy for this was essentially

to try to make sufficient room for new learnt clauses by removing unused previously-

learnt clause (see line 19 of Algorithm 1). Even if it was not really identified as the

most crucial component of CDCL solvers, it appeared more and more important

over the last years. Indeed, keeping too many learnt clauses slows down the unit

propagation process, while deleting too many of them breaks the overall learning

benefit.

As mentioned above a CDCL-based SAT solver can be formulated as a reso-

lution proof system 49,11. Consequently, the practical incarnation of modern SAT

solvers can be seen as a clauses producer procedure with a deletion strategy. How-

ever, for unsatisfiable instances, many around half of the learnt clauses are useless.

By useless, we mean that they do not occur in the final proof of unsatisfiability (a

clause can be unused for the final proof, but essential for the heuristics, by forcing,

by unit propagation a literal value). This is highlighted Figure 3.1, where 55% of

learnt clauses are useless, when clause database reduction is never done (keeping all

clauses allows to prevent an interesting clause from being (wrongly) judged useless

because of its early removal). For satisfiable instances, of course, the notion of clause

usefulness has to be defined, but clearly enough, it cannot simply be related to the

clause occurrence in the current proof. Indeed, for SAT instances, the role of learnt

clauses is to conduct the solver on some particular search space, and also, probably,

to explicit some dependencies between variable assignments. Consequently, defining
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Fig. 1. Useless clauses in the final UNSAT proof w.r.t the total number of generated clauses.
Glucose no reduce DB is a hacked version of GLUCOSE that do not perform any learnt clause

removal. Experiments are done on a set of 250 UNSAT problems from competitions 2011 and 2013.

Only successful run are collected. LR stands for linear regression

what is a relevant clause before completing the proof itself is not simple (Occurring

on the proof for UNSAT? Forcing a value for SAT?). If we want to answer this

question more formally, it is easy to show that the usefulness of a learnt clause is

computationally harder than the initial SAT question: it is related to finding a proof

of minimal size.

Trying to maintain only a relevant set of clauses is naturally older than CDCL

algorithms 24. However, in the early years of CDCL, the importance of clause

deletion strategies was not clearly identified as one of their essential components.

The aim was just to help the solver managing too many clauses. Nevertheless, a

few proposal were made. In 37, authors proposed the idea of bounding the size of

learnt clauses, keeping only clauses smaller than a certain threshold. The authors

of Berkmin 25 considered that recent clauses were better than older ones. They

used a FIFO to remove old clauses while keeping in memory short clauses (smaller

than 8). In Chaff 42, a clause was marked to be deleted when a certain number

of literals became unassigned (between 100 and 200). In Minisat 21, learnt clauses

are deleted based on an activity heuristic. Each time a clause is used in conflict

analysis, its activity is increased. Then, periodically, half of the clauses are deleted

(the ones with small activities). This technique is very interesting, because it also

deletes without additional cost subsumed learnt clauses (they will never be used in

the future, then their activity will always decrease).

Finally, it can be noticed that, for almost all these techniques, the number of

deleted clauses is often as small as possible. Minisat is a little bit more compli-

cated. The number of clauses to keep is increasing following a geometrical series

(with common ratio r = 1.1), first term is m/3 (m is the initial number of clauses).

The series is increased each time the number of conflicts reaches another geomet-

ric series of first term 100 and common ratio r′ = 1.5. For instance, on a formula

with 10,000 clauses, the maximum size of learnt clauses is firstly set to 3,333. But,
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Fig. 2. Decision levels for reaching a conflict for a representative instance. For each conflict (x-
axis) we report the number of decision levels (y-axis). The line represents the simple least-square

linear regression that fits the set of points. The circle will be explain in Section 4.

after 100 conflicts, it is increased to 3,666 (r = 1.1). Then after another 150 con-

flicts (here r′ = 1.5), it is increased to 4, 033. So, the limit would be 3,666 after

100 conflicts, 4,033 after 250 conflicts, 4,436 after 475 conflicts, then 4,819/812,

5,367/1,318, 5,904/2,078, 6,495/3,217, 7,144/4,925, 7,959/7,488... So, the first re-

duction of the database will be triggered when it will reach 7,959 clauses. Because

the second series is increasing much more quickly than the first, the first series will

only slowly increase (the limit of 7,959 clauses will remain between conflicts 7,488

and 11,333). At the end, Minisat will keep a number of clauses that will be roughly

the square root of the number of conflicts. However, it quickly reaches a number of

learnt clauses that are near the initial size of the formula, which can be a lot on

typical industrial instances.

This being said, the crucial questions remain: what are the good clauses to learn?

How to identify them during the search? These questions were at the origin of our

solver glucose. Indeed, if one is able to determine good clauses, then, one can

often remove useless ones. We introduce in the next section our measure to identify

good learnt clauses.

3.2. The Literal Block Distance (LBD) measure

glucose was proposed after an extensive series of experimental studies about

CDCL solvers. We noticed that, for most of the instances, the number of deci-

sions made before reaching a conflict globally decreases during the search 5. This

can be seen as a natural phenomenon for unsatisfiable instances (thanks to learn-

ing), but it was somehow surprising to observe this phenomenon also on satisfiable

ones. Figure 2 shows a typical observation for this. For conflict number x, we report

the decision level (y) where the conflict occurs. The line (y = m×x+n) represents

the simple least-square linear regression that fits this set of points. When m is neg-

ative, then the global behavior consists in a decreasing of decision levels along the
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search. In 5, we measured that this is the case for 83% of instances coming from

a large panel (around 300 instances). Then, the lower the value of m would be,

the faster we could expect to find the solution. Note that this was already pointed

out, but from a general perspective only, in earlier papers on CDCL solvers: “ A

good learning scheme should reduce the number of decisions needed to solve certain

problems as much as possible.” 54.

As we saw in Section 2.1, each decision can potentially create a lot of propagated

literals (what we call blocks), especially in the deepest parts of the search tree. Those

variables will probably be propagated together again and again, because they are

intuitively semantically related. Then, if we want to reduce the number of decisions,

we need to add dependencies between independent blocks, and, then, to add the

strongest possible constraints between them. This observation is at the origin of our

measure LBD (Literal Block Distance), formalized in the following.

Definition 3.1. Given a clause c, and a partition of its literals into n subsets

according to the current assignment, such that literals are partitioned w.r.t their

decision level. The LBD of c is exactly n.

From a practical point of view, we compute and store the LBD score of each

learnt clause when it is produced. This measure is static, even if it is possible (we

will see in the later, see Section 3.3) to update it during search. Intuitively, it is

easy to understand the importance of learnt clauses of LBD 2: they only contain

one variable of the last decision level (they are FUIP), and, later, this variable will

be “glued” with the block of literals propagated above, no matter the size of the

clause. We suspected all those clauses to be very important during search, and we

gave them a special name: “Glue Clauses” (which gave the name of glucose, which

is much more simpler to pronounce).

As an example, take a look at the learnt clause γ in the example of Section

2.1. Its size is equal to 3, whereas its LBD value is 2. As soon as x1 is false, the

propagation of either x3 or ¬x8 will propagate ¬x7. On the contrary, suppose now

that c8 is also a learnt clause. In order to be used as a reason, one previously needs

to assign many literals as decision ones. This clause has less chances to be useful

during the search (currently, its LBD value is equal to 4).

We would like here to point out the extensive experimental study about different

scoring of learnt clauses (including random scoring) conducted in 34. An interesting

remark that can be found in its study, although intuitive at this stage, is that, by

removing learnt clauses, the CDCL solver is improving its diversification.

3.3. Aggressive deletion of learnt clauses

One of the novelties introduced in glucose is the notion of aggressive cleaning strat-

egy, which aims to drastically reduce the learnt clauses database. This is possible

especially if the LBD measure introduced above is accurate enough. In the first ver-

sion (2009) of glucose we removed half of the learnt clauses every 20, 000+500×x
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(x is the number of times this action was previously performed). We decided to keep

forever all glue clauses. In the second version (2011), we introduced an even more

aggressive policy by removing half of learnt clauses every 2, 000 + 300 × x. Thus,

just after the first 2, 000 conflicts, we remove around 1, 000 of learnt clauses. Note

that the call of reduceDB (Algorithm 1, line 19) is done during the search (not at

a restart), like in Minisat. Thus, some clauses may be the reason of some prop-

agations, and can not be removed, whatever their score. We added a last feature

to glucose in order to have more dynamicity to the LBD scoring. It is indeed

essential to identify good clauses. Keeping a bad clause does not have a very big

impact in general, but removing a good clause could arm the solver performances.

Thus, we add the possibility for a clause to decrease its score along the search (good

clauses have a small LBD), in order to be sure to keep all good learnt clauses. More

precisely, an alternative LBD value can be computed during unit propagation (we

need all the literals to be assigned), for each clause that are reasons. However, in

the last version of glucose, we only update the LBD score of clauses occurring

in conflict analysis if the new score is better than the older one. Furthermore, we

block this clause, i.e., we protect it for one cleaning round: it will not be deleted

during the next cleaning process, whatever its score.

3.4. Explaining usefulness of LBD

Now that we have defined the LBD and its usage in glucose learnt clause database

cleaning strategies, it is natural to try to explain why it shows so good results in

practice. In this section, we provide 3 possible reasons for this.

First of all, we ran some experiments with a classical solver, that does not

perform database clause reduction. For each learnt clause, we measured the number

of times it was useful in unit-propagation and conflict analysis. Figure 3 shows the

cumulative distribution function of all values gathered over 100 benchmarks coming

from SAT competitions. For instance, 40% of the unit propagations on learnt clauses

are done on glue clauses, and only 20% are done on clauses of size 2. Half of the

learnt clauses used in the resolution mechanism during all conflict analysis have

LBD < 6, whereas we need to consider clauses of size smaller than 13 for the same

result. Such results show that LBD allows a better estimation of usefulness of a

clause.

From a theoretical point of view, it is interesting to recall, as mentioned above,

that LBD of FUIP learnt clause is optimal over all other possible UIP learning

schemas 35. This theoretical result cast a potentially good explanation for the effi-

ciency of First UIP over all other UIP mechanisms: FUIP efficiency would then be

partly explained by its ability to produce clauses of small LBD (it was also showed

that FUIP is optimal in the backjump size).

Property 3.1. Given a conflict graph, any First UIP asserting clause has the smallest

LBD value over all other UIPs.
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and conflict analysis.

A lot of efforts have been made in the last years to understand why CDCL

solvers are so efficient on real-world instances 1,2. In this series of studies, the notion

of communities, defined at the CNF level, was used: a community is a subset of

vertices of the graph, and analyzing the graph structures relies on finding a good

partition of the graph into communities, such that there is a dense connection inside

a group (community) and few connections between distinct communities. The notion

of community is useful in graph theory, network or in social networks. In 2, authors

showed that industrial SAT instances (coming form BMC, bio-info...) have a very

strong community structure. They also made some experiments showing, that, in

many cases, learning does not destroy much such community structure. This work

should, partially, explain the efficiency of CDCL solvers on such huge instances,

by suggesting that they can exploit this structure efficiently. In 46, we showed that

there is a strong correlation between the LBD value of a learnt clause and the

number of distinct communities it contains. We also showed that the correlation

is clearly weaker if we only compare the number of communities and the size of

the clause. Learnt clauses of small LBD add stronger constraints between fewer

communities. We believe that this allows the solver to focus its search on a smaller

part of the search tree, avoiding scattering, when the solver jumps between a number

of communities creating learnt clauses that link these communities together, thus

making the structure of the SAT instance worse and consequently harder to solve.

We think this study gives a new point of view of LBD and provides a new explanation

of its efficiency.

These reasons can shade a new light on LBD’s efficiency. We believe that LBD

is a good indicator of learnt clause usefulness.
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4. Restarts

4.1. Previous works

Even if restarts strategies were introduced as a way to escape the Heavy-Tailed

phenomenon 26 observed in backtrack solvers CPU time (typically on look ahead

DPLL solvers), the reasons underlying the importance of restarts CDCL solvers

are more complex. In CDCL solvers, restarting is not exactly restarting. The solver

maintains all its heuristic values between them and restarts must be seen as dynamic

rearrangements between dependencies of variables. This is especially true with the

use of phase saving heuristic 47. Additionally, the learning mechanism forces some

hidden restarts, triggered in all solvers: when a unit clause is learnt (which can be

very frequent in many huge problems, especially in the first conflicts), the solver

usually cancels all its decisions without trying to recover them in the same order, in

order to immediately consider this new fact. Thus, on problems with a lot of learnt

unit clauses, the solver will restart more often, but without following the restarts

policy.

Restarts schemes were first introduced without aggressive laws, often with in-

creasing search windows. For example, restarts are done every x conflicts for some

solvers (16,000 for Siege 51, 700 for chaff42, 550 for berkmin25). Minisat21 uses

a geometric series (starting from 100, with a factor equal to 1.5). Later, the Luby

strategy 31 was proved to be very efficient. This series follows a slow increasing law

1 1 2 1 1 2 4 1 1 2 4 8 (multiplied by a factor, typically from 16 to 256) that has

a very interesting property: it is exponentially increasing, but exponentially slowly,

thus limiting the risk of searching for a long time in the wrong search space. An

experimental evaluation of static and geometric restart schemes can be found in 17.

It was later proposed, in 14, to nest two series, a geometric one and a Luby

one. The idea was to ensure that restarts were guaranteed to increase (allowing

the search to, theoretically, terminate) and that fast restarts occurred more often

than the geometric series. In 13, it was proposed to postpone scheduled restarts

by observing the ”agility” of the solver. This measure is based on the polarity of

the phase saving mechanism. If most of the variables are forced against their saved

polarity, then the restart is postponed: the solver might find a refutation soon. If

polarities are stalling, the scheduled restart is triggered. To our knowledge, it is

the first dynamic restart strategy. That is, the restart scheme does not follow a

deterministic law, but reacts on the search state. Finally, a width-based policy was

proposed in 50, that is, each time the learnt clause has a size greater or equal to a

threshold, a penalty is set. After a given number of penalties, a restart is triggered.

The threshold and the number of penalties can be static or dynamic.

4.2. Glucose restarts

The idea behind our restart strategy is the following: since we want to produce as

many good clauses as possible (w.r.t. LBD), we simply trigger a restart when the
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last produced clauses have a too high LBDs (in which case the search is considered

to be on a bad path). To this end, we compare the current average (defined on a

slicing window of the last conflicts) of LBDs with the global average of all LBDs of

learnt clauses so far. If the current average (called avglbdcur) is substantially greater

than the global one (called avglbdglo), a restart is performed. Formally, a restart is

performed if avglbdcur ×K > avglbdglo.

In order to compute avglbdcur we use a bounded queue of size X. Of course, when-

ever the bounded queue is not full, we can not compute the moving average, then

at least X conflicts are performed before making a restart. The ”magic” constant

K, called the margin ratio, provides different behaviors. The larger K is, the fewer

restarts are performed. In the first version of glucose (2009), we used X = 100

and K = 0.7. These values were experimentally fixed to give good results on both

SAT and UNSAT problems. This strategy was not changed in glucose 2.0. How-

ever, following the good results obtained by a glucose-based solver 43, we changed

these values (X = 50 and K = 0.8) since the version 2.1 of glucose (2012).

This restart scheme is particularly efficient on unsatisfiable instances. The prob-

lem we have is the following. glucose is firing aggressive clause deletion (see Section

3) and fast restarts. On some instances, restarts are really triggered every 50 con-

flicts. So, if the solver is trying to reach a global assignment, it has only a few tries

before reaching it. Additionally, the aggressive clauses deletion strategy may have

deleted few clauses that are needed to reach the global assignment directly. More-

over, some satisfiable instances require larger restarts intervals 6,17. Thus, in the

version 2.1 of glucose 6, we added the possibility of postponing restarts. A restart

is postponed by simply emptying the bounded queue. A new restart will only be

possible when the bounded queue will be full again. Postponing occurs when the

number of total assignment grows suddenly. For example, take a look at Figure 2,

and focus on the small circle. The number of decisions before reaching a conflict

suddenly increases. It seems that the solver goes trough a difficult part of the search

space, and is closed to a full assignment. We can safely suppose that the solver needs

to stay on this search space in order to find a solution. To this end, we compute the

global average of assigned literals when a conflict occurs (avgassglo ) and an average

of the recent ones (avgasscur). A restart is postponed if avgassglo > R × avgasscur. Here

again, in order to compute avgasscur, we use a bounded queue (of size 5000). In our

implementation, we use R = 1.4.

Recently, the authors of 17 proposed an original and elegant implementation of

our restart strategy using an exponential moving average. This approach allows a

few implementation advantages: it is computed using only a few integers variables

and does not need bounded queues. More importantly, it favors the weights (LBD

or number of assigned literals) of recent values, similarly to the VSIDS heuristic.
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5. Parallel solving

5.1. Introduction

Following the progresses made in computer architectures, a number of attempts

have been made for parallelizing SAT solvers 3,33,10. Computers may have now

many cores and distributed architectures are also easily available but parallelizing

remains a challenge. The first idea of simply exploring different branches is not ef-

ficient (industrial instances may have hundreds of thousands of variables, and thus

only splitting on 10 variables (using already 1024 cores) does not change the initial

problem much). Moreover, it is harder and harder to improve single core SAT solvers
8, and thus exploiting multicores architecture may be a good way of significantly im-

proving them. Two main approaches are commonly used to parallelize SAT solvers,

the divide and conquer one19,30,52 and the portfolio one28,10,3. In this paper, we only

focus on portfolio solvers. The main idea is to exploit the complementarity between

different sequential CDCL strategies to let them compete on the same formula with

more or less cooperation between them 28,18,3. Each thread deals with the whole

formula and cooperation is achieved through the exchange of learnt clauses. Even if

finding good different strategies is important for deploying a good portfolio solver,

the key point is the clause exchange. When a solver learns a clause, it (directly

or not) has to decide if this clause has to be shared or not. Usually, solvers send

clauses of small size 28,15 or of small LBD 3 but may consider additional dynamic

limits 27. Less works have been conducted on importation policies. Some solvers

do not directly use imported clauses. For example, Penelope uses the concept of

freezing mechanism to add or not the imported clause in the search space 3.

In the next section, we explain the novel strategies used in our parallel portfolio

version of glucose (called syrup: a lot of glucose) 7.

5.2. Glucose (Syrup) strategy

First of all, note that our approach tries to restrict the “orthogonal” search to its

minimum. Thus, we rather see our approach as a simple parallelization effort of the

same engine rather than a “portfolio” one. Our final goal is to see all solvers working

together to produce a single proof, as short as possible. So, we must carefully manage

shared clauses.

In syrup, we have a strategy for clauses exportations and for clauses impor-

tations. Let us first define our exportation policy. Exporting clauses can be highly

harmful, especially if we target a high number of cores. On computers with 64 cores,

it is easy to flood a core with too many clauses from the other cores. We based our

strategies on the following observations. A sequential solver (here glucose) learns

a lot of clauses that are seen only once (in conflict reasoning) after their computa-

tion (see Figure 4). If we carefully observe this figure, we can see that only 34% of

them are seen at least one time during conflict analysis, which is surprisingly low.

If we focus on clauses seen at least twice, this ratio falls to 22%. So, if we consider a
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Fig. 4. Scatter plot of the number of conflicts (X axis) against the number of clauses seen at least

Z={1, 2, 3, 4} times for all the successful launches (on SAT 2011 problems) in glucose

clause useful if it is used many times during conflict analysis, this simple measure is

highly discriminating. It seems not realistic to send to the other cores clauses that

are useless even for a single engine. The key point of syrup is thus to not send

clauses immediately after their creation. The solver waits until the clause is seen

a given number of times during conflict analysis before sending it. Starting from

these observations, we choose the following filters for clauses exportation:

• Unaries and glues: these clauses are immediately sent after their computa-

tion. They are assumed to be good clauses.

• Clauses seen at least twicein during conflict analysis are sent. Furthermore,

we add a limit on their LBD (less than the median of all LBDs) and their

size (less than the average of all size).

Now, let us focus on the importation policy. An imported clause can have a

bad impact on the search space. This is especially true for satisfiable instances

where the solver tries to find a complete interpretation. A learnt clause can force

the solver to go in the wrong direction. Importing clauses is done at each restart.

This avoid extra works (for the 2-Watched literal scheme to work, the clause needs

to be partially ordered according to the partial assignment), and this is possible

thanks to our restart strategy, which is very aggressive (see Section 4). The novelty

of our approach is the principle of probation for imported clauses (except binary

clauses). When a clause is imported, we watch it only by one literal. This watching

scheme does not guarantee anymore that all unit propagations are performed after

each decision. However, this is sufficient to ensure that any conflicting clause will be

detected during unit propagation. The interest of this technique is twofold. Firstly,

the imported clauses will not pollute the current search of the solver, except when

they are falsified. Indeed, the search of a solver is heavily guided by its own learnt

clauses and external clauses will not have any negative impact until they became

false. The classical learnt database deletion is also circumscribed to local learnt

clauses. When an imported clause is falsified, it is “promoted”, i.e., it is watched
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with 2 literals like any other internal clause. The clause is then part of the solver

search strategy, and can be used for propagation. Some other advantages come from

this strategy. Less efforts for propagations is due to keep track of the clause status

until it is promoted and, more importantly, a LBD score is computed when the

clause is promoted, giving to this clause a ”local” score, according to the current

core search space. This strategy is very restrictive: in average, only 10% of imported

clauses are effectively promoted. Figure 5 shows a plot of the number of imported

clauses that are finally promoted.
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Fig. 5. Scatter plot of the number of conflicts (X axis) against the number of clauses that are

finally promoted after being imported into a core, for all the successful launches (on SAT 2011
problems) in glucose. L.R. stands for Linear Regression.

6. Incremental SAT

In the last years, a new use of SAT solvers has emerged, called incremental SAT

solving. This mode of operation was already implemented in Minisat, but the

number of applications using it increased a lot recently. It allows to use the same

SAT engine to solve similar formulas (with only a few differences in the clauses

set). In such a case, the SAT solver does not solve a single (potentially) hard

instance, but may be used as an oracle and called thousands of times on a number

of instances close to each others. Incremental SAT solving has many applications:

Minimal unsatisfiable core extraction (MUS) 12, MAXSAT solving 41, planning 38,

bounded model checking 16, or argumentation 39 are some examples. In general, the

solver solves a formula Σ, then immediately after, it solves a formula Σ′ such that

Σ′ has a subset of additional clauses (Σ+) and a subset of clauses deleted (Σ−),

that is Σ′ = Σ\Σ− ∪ Σ+.

Moreover, CDCL SAT solvers only consider their past activity to guide the

search (heuristic VSIDS, learning, phase saving...). Then, it seems clear, in order to

have the best possible performances, to keep the solver alive between two successive

calls while giving him the possibility to add and remove clauses. This is what is called
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incremental SAT solving 44,22. Adding new clauses (and new variables) is very easy

to implement and is natively included in all CDCL solvers. Deleting initial clauses

is much more complex, but can be done in a smart way using assumptions. Let

us explain how one can try to efficiently keep learnt clauses from the past while

removing some initial clause.

When an original clause is temporarily (or not) deleted from the current formula,

is not possible to directly re-use all learnt clauses that were computed using this

last one. A simple and elegant solution to this is to add assumptions to solvers. As-

sumptions are characterized by a set A of literals assigned to true before all decision

variables 22. Then, one additional decision level can be needed per assumption, and

the search really starts when all assumptions are assigned. The first real decision is

made at level d = |A|+ 1.

Assumptions can be used to activate/disable a clause c. For that purpose, one

has to associate to c a new variable si called selector. The literal si is added to

the clause c. If the selector si is assigned to false (resp true) then the clause is

activated (resp. disabled). Selectors appear only positively in the formula, and,

thanks to the conflict analysis mechanism, all learnt clauses keep a footprint (the

associated selector si) of all original clauses used to derivate them. When a selector

si is assigned to true, the related clause is disabled, but also all learnt clause that

were derivated from it: as it was considered by the solver as a decision, these literals

occur in all these learnt clauses by construction.

Let us illustrate this with a modified version of the example introduced in Section

2.1. Suppose we add a selector si for all clauses c1 . . . c8 (remember that we add

each selector to its clause). We choose to activate all clauses, then all selectors are

assigned first (to true) and the partial interpretation is I = 〈¬s1@1〉 . . . 〈¬s8@8〉.
Obviously, in this case, we obtain exactly the initial formula. The same decision

literals produce the same partial interpretation, with different decision levels (for

example x1 is assigned at level 9). Thus, we obtain the same conflict to analyse,

leading to the following learnt clause:

• d∗ = c7 ⊗x9
c6 = ¬x3 ∨ x8 ∨ ¬x7 ∨ ¬x13 ∨ s7 ∨ s6

• γ = d∗ ⊗x13 c5 = ¬x3 ∨ x8 ∨ ¬x7 ∨ s7 ∨ s6 ∨ s5

It is clear that learnt clauses will contain all selectors seen in conflict analysis,

tracing their origin. On this simple example, γ contains 3 selectors. If on a next call

to the SAT oracle, we choose to disable c5, then the selector s5 will be assigned to

true. In such a case, we will disable c5 and γ, a learnt clause that has c5 from origin.

In 4, we modified glucose in order to efficiently cope with incremental SAT

solving. We especially targeted applications needing a lot of selectors, like MUS

extraction 12, where there is one selector per clause. All learnt clause have a footprint

of all original clauses that were used in the resolution process to derive them. Of

course, the number of selectors in learnt clauses can be very large but, additionally,

each selector has its own decision level. We shown in 4 that the LBD of learnt
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clauses in this context is approximatively the same as their size, leading to a weaker

LBD measure (see Section 3). Then, in case of incremental SAT solving we changed

the definition of LBD by not taking into account selectors for its computation.

Furthermore, since learnt clauses with a lot of selectors can be very large, we also

adapted some algorithms and techniques:

• Update LBD of clauses carefully, by recording the size without selectors.

• Change the traversal of learnt clause for checking if they are unit (or in

conflict). For this, selectors are pushed to the end of the clause in memory.

• Check only few literals when removing satisfiable clauses

All this modifications improved a lot glucose in the context incremental SAT

solving. Today, glucose is the SAT-based engine of many solvers that deal with

incremental SAT solving: MUS (muser 12), MAXSAT (open-wbo 41, eva500 45),

argumentation (coquiaas39). . .

7. Summary

As it is shown in this paper, since its first release in 2009, glucose has been

significantly improved. In order to illustrate this, let us report here the performances

of the main released versions over the years. Before that, and once again, it is

important to note that glucose is essentially based on the famous solver Minisat
21 and an important part of this work was possible thanks to this solver.

2009 (Version 1.0). Introduction of LBD. First implementation (based on Min-

isat 2.0). Dynamic restarts. See 5 for more details.

2011 (Version 2.0). Based on Minisat 2.2. More agressive deletion strategy. Add

additional features.

2012 (Version 2.3). Add new restart strategies that blocks restarts (see Section

4).

2013 (Version 3.0). Add incremental features (see Section 6). Add certified unsat

proofs in DRUP format29 (thanks to M. Heule to provide us the patch).

2014 (Version 4.0) Add the multi-thread portfolio approach (see Section 5).

2016 (Version 4.1) Add additional features. The solver learns from the first con-

flicts and try to adapt its search in consequence. Add new heuristic for the

phase of decision variables 8.

We propose now to evaluate versions 1.0, 2.0, 3.0, 4.1 of glucose and syrup

(with version 4.1 of glucose as core engine, 8 cores) on all application/industrial

benchmarks from competitions 2011 to 2016. Each pool of instances contains 300

problems coming from the application track. The time limit is set to 2500 seconds.

In order to contextualize these results, we also add the last version of lingeling

(version bbc that participated to the SAT competition 2016), one of the best SAT

solvers over the years. Its sequential version (lgl) and parallel one (plgl) are part

of these experiments. Results are shown Table 7.
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Table 1. Comparison of different versions of glucose on SAT competitions benchmarks. Sequential
(lgl and parallel version (plgl of Lingeling are also present in this comparison. Time limit is set to

2500 seconds. Each column (T U/S) gives the total (T) number of problem solved with the number

of UNSAT (U) and SAT (S) ones. Last column represents the total number of problem solved on all
competitions. Best results for a given competition are underlined.

Solver 2011 2013 2014 2015 2016 Total

1.0 183 98/85 166 71/95 163 88/75 196 85/111 113 59/54 821 401/420
2.0 199 110/89 191 87/104 194 98/96 233 95/138 127 69/58 944 459/485
3.0 202 114/88 191 91/100 199 104/95 226 97/129 132 74/58 950 480/470
4.1 205 115/90 231 108/123 211 111/100 232 100/132 132 72/60 1011 506/505
lgl 207 123/84 191 98/93 226 129/97 241 106/135 140 85/55 1005 541/464

syrup 231 134/97 263 132/131 236 128/108 262 109/153 160 96/64 1152 599/553
plgl 239 137/102 254 133/121 250 142/108 264 112/152 169 103/66 1176 627/549

Let us start to analyse these results by looking at the total number of problems

solved (last column). First of all, the improvements over the year with glucose is

clear. Each revision increases the number of problems solved. A big improvement was

done with version 2.0. It is important to note that version 2.0 uses a new version

of the solver Minisat and a more agressive restart scheme (see Section 4). Last

version of glucose also provides a big improvement, partly because of the analysis

of the search behavior 8. Solvers glucose 4.1 and lingeling are comparable. Solver

glucose solves the largest number of problems but lingeling solves much more

unsatisfiable ones.

Now, if we compare each competitions set of benchmarks, we can note that

glucose becomes better and better version after version. One exception here, the

version 2.0 solves the biggest number of satisfiable problems in 2015. lingeling

solves slightly more problems than glucose 4.1 for all competitions, except in

2013 with a big gap for glucose 4.1. This difference between competition results

highlights the problem of benchmarks selection. For instance, glucose 4.1 is not the

best on cryptographic problems (this was already pointed in our paper 5), whereas

lingeling performs very well on such benchmarks (inprocessing techniques are, in

this case, useful 36,9).

Let us now focus on parallel versions, syrup and plingeling. One can note huge

improvements comparing to their single core engine. Here again these two solvers

obtain comparable results and here again syrup is better on satisfiable instances

whereas plingeling is better on unsatisfiable ones.

However, the rules of the SAT competition allow only a loose comparison of

solvers. In the early versions of the competition, the comparison of two solvers was

not only based on the number of solved instances. CPU time was considered. It was

trivially believed a few years ago that a fast solver would be able to solve more

instances, and thus simply comparing the number of solved instances was a good

way of giving a simple and robust measure. However, as it is common as soon as

a benchmarking measure is proposed, candidates to the SAT competition adapted

their solvers to this rule. This has allowed a family of solvers that are slower but
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Table 2. Careful ranking. For each competition and for all
benchmarks), we compute the careful ranking by taking into

account these 4 solvers. The higher is the number, the better

is the solver.

Solver 2011 2013 2014 2015 2016 Total

glucose 4.1 -131 -163 -230 -269 -176 -856
lgl -195 -399 -183 -209 -110 -1067

syrup 161 350 228 274 136 1131
plgl 165 212 185 204 150 792

that can solve more instances if the CPU time stays in the same order of magnitude

(typically 5000s). For instance, the 2016 winner has a strategy that switches the

branching strategy after 2500s. Inprocessing techniques are also, to some extend,

targeting long run. The comparison of CPU time is not trivial, essentially because

of the timeout parameter. Here, we report the same results as above by using the

Careful Ranking proposed by Alen Van Gelder 23, that, intuitively, tries to take the

CPU time and the timeouts into account. We consider only version 4.1 of glucose

and syrup. We restrict this table to only 4 solvers to make the comparison stronger

(having more glucose than Lingeling may introduce an bias in the final score,

even if the relative ranking should remain). Results are available Table 7.

What can be concluded from this set of results is that plingling and syrup are

very comparable, depending on the set of selected benchmarks. More surprisingly,

if we sum up all the benchmarks, the picture is now not the same as above. If

we consider only the number of solved instance, plingling is winning. Now, if

we consider the CPU time, the picture is clearly in favor of syrup and glucose.

That means that, even if syrup solves fewer benchmarks, it is generally faster than

plinging. This is the same for lingeling and glucose.

Now, let us finish this section with 4 scatter plots, Figure 6. The first one (a)

compares glucose 4.1 with the initial revision. This scatter confirms that version

4.1 is much more faster, but provides new insights: for many satisfiable instances,

version 1.0 is faster than version 4.1. This is probably due to the agressive policies:

satisfiable instances need long restarts and larger learnt clauses database. The sec-

ond one (b), provides the comparison between syrup and glucose 4.1. Here, results

are obvious: except for few satisfiable instances, the portfolio approach outperforms

the sequential one. Finally, let us compare our solver with lingeling sequential

(c) and parallel (d) versions). This shows, graphically, what was pointed out above

thanks to the careful ranking: glucose (resp. syrup) is faster than lingeling

(resp. plingeling) even if it solves fewer instances.

8. Conclusion and future works

In this paper, we retraced the different enhancements added to the original glu-

cose, introduced in 2009. We showed that all the mechanisms underlying the Literal

Block Distance (LBD), a central mesure of clause usefulness, can be used in many
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(a) 4.1 vs 1 (b) syrup vs 4.1

(c) 4.1 vs lgl (d) syrup vs plgl

Fig. 6. Different scatter plots. Each dot represents an instance. All competition instances (1500)

are represented. When the dot is above the diagonal then the first solver (version 4.1 for fig. (a))
is faster than the second one (version 1 for fig. (a)) to solve the given instance.

components of a core Conflict Driven Clause Learning algorithm. This measure is

crucial to identify good clauses but also when to restart.

However, given the number of new features added to glucose over the years,

it may be difficult to understand which contributions are the most important, for

someone that did not follow all the history of our solver. This paper aims at detailing

the main techniques that can be found in the last version of glucose, focusing

on the most important ones. We particularly focus also on the parallel version of

glucose, that introduced the concept of Lazy sharing of clauses.

Thanks to an exhaustive experimental study of the main releases of glucose,

over the years, tested against a large set of benchmarcks, we thus demonstrated

that the notion of LBD is still very important for SAT solvers, and illustrated

the performance gain. We showed that, glucose was constantly offering the same

performances as the last lingeling solver, taken as a reference in this paper. This

observations were extended to the parallel version of each solver. Moreover, we

showed that, as soon as a more precise measure for solver comparison is used,

taking into account the CPU time, the balance is clearly in favor of Glucose.
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