Skip to Main content Skip to Navigation
Journal articles

Discovery of pyrazolo-thieno[3,2-d]pyrimidinylamino-phenyl acetamides as type-II pan-tropomyosin receptor kinase (TRK) inhibitors: Design, synthesis, and biological evaluation

Abstract : Tropomyosin receptor kinase (TRK) represents an attractive oncology target for cancer therapy related to its critical role in cancer formation and progression. NTRK fusions are found to occur in 3.3% of lung cancers, 2.2% of colorectal cancers, 16.7% of thyroid cancers, 2.5% of glioblastomas, and 7.1% of pediatric gliomas. In this paper, we described the discovery of the type-II pan-TRK inhibitor 4c through the structure-based drug design strategy from the original hits 1b and 2b. Compound 4c exhibited excellent in vitro TRKA, TRKB, and TRKC kinase inhibitory activity and anti-proliferative activity against human colorectal carcinoma derived cell line KM12. In the NCI-60 human cancer cell lines screen, compound 4g demonstrated nearly 80% of growth inhibition for KM12, while only minimal inhibitory activity was observed for the remaining 59 cancer cell lines. Western blot analysis demonstrated that 4c and its urea cousin 4k suppressed the TPM3-TRKA autophosphorylation at the concentrations of 100 nM and 10 nM, respectively. The work presented that 2-(4-(thieno[3,2-d]pyrimidin-4-ylamino)phenyl)acetamides could serve as a novel scaffold for the discovery and development of type-II pan-TRK inhibitors for the treatment of TRK driven cancers.
Document type :
Journal articles
Complete list of metadata

https://hal-univ-artois.archives-ouvertes.fr/hal-03185627
Contributor : Virginie Justin-Labonne <>
Submitted on : Tuesday, March 30, 2021 - 2:33:23 PM
Last modification on : Monday, July 19, 2021 - 2:06:03 PM

Identifiers

Collections

Citation

Wei Yan, Lingtian Zhang, Fengping Lv, Marialuisa Moccia, Francesca Carlomagno, et al.. Discovery of pyrazolo-thieno[3,2-d]pyrimidinylamino-phenyl acetamides as type-II pan-tropomyosin receptor kinase (TRK) inhibitors: Design, synthesis, and biological evaluation. European Journal of Medicinal Chemistry, Elsevier, 2021, 216, pp.113265. ⟨10.1016/j.ejmech.2021.113265⟩. ⟨hal-03185627⟩

Share

Metrics

Record views

26