Boundedness of composition operators on general weighted Hardy spaces of analytic functions - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

Boundedness of composition operators on general weighted Hardy spaces of analytic functions

Pascal Lefèvre
Daniel Li
Hervé Queffélec
  • Function : Author
  • PersonId : 916881
Luis Rodríguez-Piazza
  • Function : Author
  • PersonId : 859619

Abstract

We characterize the (essentially) decreasing sequences of positive numbers β = (β n) for which all composition operators on H 2 (β) are bounded, where H 2 (β) is the space of analytic functions f in the unit disk such that ∞ n=0 |c n | 2 β n < ∞ if f (z) = ∞ n=0 c n z n. We also give conditions for the boundedness when β is not assumed essentially decreasing.
Fichier principal
Vignette du fichier
Weighted Hilbert.pdf (291.82 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03029931 , version 1 (29-11-2020)
hal-03029931 , version 2 (14-03-2022)

Identifiers

Cite

Pascal Lefèvre, Daniel Li, Hervé Queffélec, Luis Rodríguez-Piazza. Boundedness of composition operators on general weighted Hardy spaces of analytic functions. 2020. ⟨hal-03029931v1⟩
46 View
37 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More