E. L. Glämsta, B. Meyerson, J. Silberring, L. Terenius, and F. Nyberg, Isolation of a hemoglobin-derived opioid peptide from cerebrospinal fluid of patients with cerebrovascular bleedings, Biochem Biophys Res Commun, vol.184, issue.2, pp.1060-1066, 1992.

A. A. Karelin, M. M. Philippova, E. V. Karelina, and V. T. Ivanov, Isolation of endogenous hemorphin-related hemoglobin fragments from bovine brain, Biochem Biophys Res Commun, vol.202, issue.1, pp.410-415, 1994.

O. N. Yatskin, M. M. Philippova, E. Y. Blishchenko, A. A. Karelin, and V. T. Ivanov, LVVand VV-hemorphins: comparative levels in rat tissues, FEBS Lett, vol.428, issue.3, pp.286-90, 1998.

J. Cejka, B. Zelezná, J. Velek, J. Zicha, and J. Kunes, LVV-hemorphin-7 lowers blood pressure in spontaneously hypertensive rats: radiotelemetry study, Physiol Res, vol.53, issue.6, pp.603-610, 2004.

I. Fruitier-arnaudin, M. Cohen, S. Bordenave, F. Sannier, and J. Piot, Comparative effects of angiotensin IV and two hemorphins on angiotensinconverting enzyme activity, Peptides, vol.23, issue.8, pp.83-92, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01967812

I. Moeller, R. A. Lew, F. A. Mendelsohn, A. I. Smith, M. E. Brennan et al., The globin fragment LVV-hemorphin-7 is an endogenous ligand for the AT4 receptor in the brain, J Neurochem, vol.68, issue.6, pp.2530-2537, 1997.

A. L. Albiston, E. S. Pederson, P. Burns, B. Purcell, J. W. Wright et al., Attenuation of scopolamine-induced learning deficits by LVV-hemorphin-7 in rats in the passive avoidance and water maze paradigms, Behav Brain Res, vol.154, issue.1, pp.239-282, 2004.

V. Brantl, C. Gramsch, F. Lottspeich, R. Mertz, K. H. Jaeger et al., Novel opioid peptides derived from hemoglobin: hemorphins, Eur J Pharmacol, vol.125, issue.2, pp.309-319, 1986.

I. Garreau, Q. Zhao, C. Pejoan, A. Cupo, and J. M. Piot, VV-hemorphin-7 and LVVhemorphin-7 released during in vitro peptic hemoglobin hydrolysis are morphinomimetic peptides, Neuropeptides, vol.28, issue.4, pp.90028-90032, 1995.

G. S. Patten, R. J. Head, and M. Y. Abeywardena, Effects of casoxin 4 on morphine inhibition of small animal intestinal contractility and gut transit in the mouse, Clin Exp Gastroenterol, vol.4, pp.23-31, 2011.

J. E. Zadina, A. J. Kastin, D. Kersh, and A. Wyatt, Tyr-MIF-1 and hemorphin can act as opiate agonists as well as antagonists in the guinea pig ileum, Life Sci, vol.51, issue.11, pp.869-85, 1992.

T. P. Davis, T. J. Gillespie, and F. Porreca, Peptide fragments derived from the betachain of hemoglobin (hemorphins) are centrally active in vivo, Peptides, vol.10, issue.4, pp.90107-90108, 1989.

H. Ueda, S. Matsunaga, M. Inoue, Y. Yamamoto, and T. Hazato, Complete inhibition of purinoceptor agonist-induced nociception by spinorphin, but not by morphine, Peptides, vol.21, issue.8, pp.1215-1236, 2000.

Y. Yamamoto, H. Ono, A. Ueda, M. Shimamura, K. Nishimura et al., Spinorphin as an endogenous inhibitor of enkephalin-degrading enzymes: roles in pain and inflammation, Curr Protein Pept Sci, vol.3, issue.6, pp.587-99, 2002.

J. Caron, D. Domenger, Y. Belguesmia, M. Kouach, J. Lesage et al., Protein digestion and energy homeostasis: How generated peptides may impact intestinal hormones?, Food Res Int, pp.310-318, 2016.

D. Domenger, J. Caron, Y. Belguesmia, J. Lesage, P. Dhulster et al., Bioactivities of hemorphins released from bovine hemoglobin gastrointestinal digestion: dual effects on intestinal hormones and DPP-IV regulations, J Funct Foods, vol.36, pp.9-17, 2017.

M. R. Yeomans and R. W. Gray, Opioid peptides and the control of human ingestive behaviour, Neurosci Biobehav Rev, vol.26, issue.6, pp.41-47, 2002.

C. Duraffourd, D. Vadder, F. Goncalves, D. Delaere, F. Penhoat et al., Mu-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake, Cell, vol.150, issue.2, pp.377-88, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00737417

M. Maggioni, M. Stuknyt?, D. Luca, P. Cattaneo, S. Fiorilli et al., Transport of wheat gluten exorphins A5 and C5 through an in vitro model of intestinal epithelium, Food Res Int, pp.319-345, 2016.

J. Meng, G. M. Sindberg, and S. Roy, Disruption of gut homeostasis by opioids accelerates HIV disease progression, Front Microbiol, vol.6, p.643, 2015.

A. Sharma and M. M. Jamal, Opioid induced bowel disease: a twenty-first century physicians' dilemma. Considering pathophysiology and treatment strategies, Curr Gastroenterol Rep, vol.15, issue.7, p.334, 2013.

J. Meng, H. Yu, J. Ma, J. Wang, S. Banerjee et al., Morphine induces bacterial translocation in mice by compromising intestinal barrier function in a TLR-dependent manner, PLoS One, vol.8, issue.1, p.54040, 2013.

P. Artursson and J. Karlsson, Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells, Biochem Biophys Res Commun, vol.175, issue.3, pp.880-885, 1991.

I. J. Hidalgo, T. J. Raub, and R. T. Borchardt, Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability, Gastroenterology, vol.96, issue.3, pp.80072-80073, 1989.

L. Smetanová, V. St?tinová, Z. Svoboda, and J. Kvetina, Caco-2 cells, biopharmaceutics classification system (BCS) and biowaiver, Acta Medica, vol.54, issue.1, pp.3-8, 2011.

C. Lohmann, S. Hüwel, and H. J. Galla, Predicting blood-brain barrier permeability of drugs: evaluation of different in vitro assays, J Drug Target, vol.10, issue.4, pp.263-76, 2002.

S. Lundquist, M. Renftel, J. Brillault, L. Fenart, R. Cecchelli et al., Prediction of drug transport through the blood-brain barrier in vivo: a comparison between two in vitro cell models, Pharm Res, vol.19, issue.7, pp.976-81, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02490540

R. Cecchelli, S. Aday, E. Sevin, C. Almeida, M. Culot et al., A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells, PLoS One, vol.9, issue.6, p.99733, 2014.

D. E. Eigenmann, C. Dürig, E. A. Jähne, M. Smie?ko, M. Culot et al., In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs, Eur J Pharm Biopharm, vol.103, pp.118-144, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02510088

F. Gosselet,

, Med Sci, vol.33, issue.4, pp.423-454, 2017.

C. Dugardin, O. Briand, V. Touche, M. Schonewille, F. Moreau et al., Retrograde cholesterol transport in the human Caco-2/TC7 cell line: a model to study trans-intestinal cholesterol excretion in atherogenic and diabetic dyslipidemia, Acta Diabetol, vol.54, issue.2, pp.191-200, 2017.

Q. Zhao, I. Garreau, F. Sannier, and J. M. Piot, Opioid peptides derived from hemoglobin: hemorphins, Biopolymers, vol.43, issue.2, pp.75-98, 1997.

C. Harrison, S. Mcnulty, D. Smart, D. J. Rowbotham, D. K. Grandy et al., The effects of endomorphin-1 and endomorphin-2 in CHO cells expressing recombinant mu-opioid receptors and SH-SY5Y cells, Br J Pharmacol, vol.128, issue.2, pp.472-480, 1999.

C. Cakir-kiefer, L. Roux, Y. Balandras, F. Trabalon, M. Dary et al., In vitro digestibility of ?-casozepine, a benzodiazepine-like peptide from bovine casein, and biological activity of its main proteolytic fragment, J Agric Food Chem, vol.59, issue.9, pp.4464-72, 2011.

M. Iwan, B. Jarmo?owska, K. Bielikowicz, E. Kostyra, H. Kostyra et al., Transport of micro-opioid receptor agonists and antagonist peptides across Caco-2 monolayer, Peptides, vol.29, issue.6, pp.1042-1049, 2008.

S. Osborne, W. Chen, R. Addepalli, M. Colgrave, T. Singh et al., In vitro transport and satiety of a beta-lactoglobulin dipeptide and beta-casomorphin-7 and its metabolites, Food Funct, vol.5, issue.11, pp.2706-2724, 2014.

M. Stuknyt?, M. Maggioni, S. Cattaneo, D. Luca, P. Fiorilli et al., Release of wheat gluten exorphins A5 and C5 during in vitro gastrointestinal digestion of bread and pasta and their absorption through an in vitro model of intestinal epithelium, Food Res Intern, vol.72, pp.208-222, 2015.

C. Grootaert, G. Jacobs, B. Matthijs, J. Pitart, G. Baggerman et al., Quantification of egg ovalbumin hydrolysate-derived anti-hypertensive peptides in an in vitro model combining luminal digestion with intestinal Caco-2 cell transport, Food Res Int, pp.531-572, 2017.

Y. Koda, D. Borgo, M. Wessling, S. T. Lazarus, L. H. Okada et al., Synthesis and in vitro evaluation of a library of modified endomorphin 1 peptides, Bioorg Med Chem, issue.11, pp.6286-96, 2008.

M. Satake, M. Enjoh, Y. Nakamura, T. Takano, Y. Kawamura et al., Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers, Biosci Biotechnol Biochem, vol.66, issue.2, pp.378-84, 2002.

H. Lennernäs, K. Palm, U. Fagerholm, and P. Artursson, Comparison between active and passive drug transport in human intestinal epithelial (caco-2) cells in vitro and human jejunum in vivo, Int J Pharm, vol.127, issue.1, pp.103-110, 1996.

H. S. Sharma, K. Sanderson, E. Glämsta, Y. Olsson, and F. Nyberg, Vascular permeability to hemorphins in the central nervous system, Biology and Physiology of the Blood-Brain Barrier. US, pp.63-71, 1996.

W. A. Banks and A. J. Kastin, Peptides and the blood-brain barrier: lipophilicity as a predictor of permeability, Brain Res Bull, vol.15, issue.3, pp.287-92, 1985.

P. Varamini, F. M. Mansfeld, J. T. Blanchfield, B. D. Wyse, M. T. Smith et al., Synthesis and biological evaluation of an orally active glycosylated endomorphin-1, J Med Chem, vol.55, issue.12, pp.5859-67, 2012.

K. Fukuda, S. Kato, T. Shoda, H. Morikawa, H. Mima et al., Partial agonistic activity of naloxone on the opioid receptors expressed from complementary deoxyribonucleic acids in Chinese hamster ovary cells, Anesth Analg, vol.87, issue.2, pp.450-455, 1998.

M. Shimizu, Interaction between food substances and the intestinal epithelium, Biosci Biotechnol Biochem, vol.74, issue.2, pp.232-273, 2010.

M. Shimizu and D. O. Son, Food-derived peptides and intestinal functions, Curr Pharm Des, vol.13, issue.9, pp.885-95, 2007.

B. R. Stevenson, J. M. Anderson, I. D. Braun, and M. S. Mooseker, Phosphorylation of the tight-junction protein ZO-1 in two strains of Madin-Darby canine kidney cells which differ in transepithelial resistance, Biochem J, vol.263, issue.2, pp.597-606, 1989.

M. Tanaka, R. Kamata, and R. Sakai, EphA2 phosphorylates the cytoplasmic tail of Claudin-4 and mediates paracellular permeability, J Biol Chem, issue.51, pp.42375-82, 2005.

Z. Lu, L. Ding, Q. Lu, and Y. Chen, Claudins in intestines. Tissue Barriers, vol.1, issue.3, p.24978, 2013.