A. P. Dempster, Upper and lower probabilities induced by a multivalued mapping, Annals of Mathematical Statistics, vol.38, pp.325-339, 1967.

T. Denoeux, A k-nearest neighbor classification rule based on Dempster-Shafer theory, IEEE Transactions on Systems, Man and Cybernetics, vol.25, issue.5, pp.804-213, 1995.

T. Denoeux and P. Smets, Classification using belief functions: Relationship between casebased and model-based approaches, IEEE Transactions on Systems, Man, and Cybernetics, vol.36, issue.6, pp.1395-1406, 2006.

S. Destercke, P. Buche, and B. Charnomordic, Evaluating data reliability : an evidential answer with application to a web-enabled data warehouse, IEEE Transactions on Knowledge and Data Engineering, vol.25, issue.1, pp.92-105, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01267940

S. Destercke and D. Dubois, Idempotent conjunctive combination of belief functions: Extending the minimum rule of possibility theory, Information Sciences, vol.181, issue.18, pp.3925-3945, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00651875

D. Diderot and J. Le-rond, Encyclopédie, ou dictionnaire raisonné des sciences

D. Dubois and H. Prade, A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets, International Journal of General Systems, vol.12, issue.3, pp.193-226, 1986.

Z. Elouedi, E. Lefèvre, and D. Mercier, Discountings of a belief function using a confusion matrix, 22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), vol.1, pp.287-294, 2010.

Z. Elouedi, K. Mellouli, and P. Smets, Assessing Sensor Reliability for Multisensor Data Fusion Within the Transferable Belief Model, IEEE Transactions on Systems, Man and Cybernetics, vol.34, issue.1, pp.782-787, 2004.

R. Haenni, Uncover Dempster's rule where it is hidden, Proceedings of the 9th International Conference on Information Fusion (FUSION 2006), 2006.

R. Haenni and S. Hartmann, Modeling partially reliable information sources: a general approach based on Dempster-Shafer theory, Information Fusion, vol.7, issue.4, pp.361-379, 2006.

R. D. Huddleston and G. K. Pullum, A Student's Introduction to English Grammar, 2005.

F. Janez and A. Appriou, Théorie de l'évidence et cadres de discernement non exhaustifs, Traitement du Signal, vol.13, issue.3, pp.237-250, 1996.

F. Janez and A. Appriou, Theory of evidence and non-exhaustive frames of discernment : Plausibilities correction methods, International Journal of Approximate Reasoning, vol.18, pp.1-19, 1998.

J. Klein and O. Colot, Automatic discounting rate computation using a dissent criterion, Proceedings of the 1st Workshop on the Theory of Belief Functions (BELIEF), pp.1-6, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00668110

J. Kohlas and P. P. Shenoy, Computation in valuation algebras, Handbook of Defeasible Reasoning and Uncertainty Management Systems: Algorithms for Uncertainty and Defeasible Reasoning, vol.5, pp.5-39, 2000.

E. Lefèvre, F. Pichon, D. Mercier, Z. Elouedi, and B. Quost, Estimation de sincérité et pertinenceà partir de matrices de confusion pour la correction de fonctions de croyance, Rencontres Francophones sur la Logique Floue et ses Applications (LFA), vol.1, pp.287-294, 2014.

D. Mercier, T. Denoeux, M. R. Masson-;-r, J. Yager, M. Verdegay et al., Belief function correction mechanisms, Foundations of Reasoning under Uncertainty, vol.249, pp.203-222, 2010.

D. Mercier, E. Lefèvre, and F. Delmotte, Belief functions contextual discounting and canonical decompositions, International Journal of Approximate Reasoning, vol.53, issue.2, pp.146-158, 2012.

D. Mercier, F. Pichon, and E. Lefèvre, Corrigendum to "Belief functions contextual discounting and canonical decompositions, International Journal of Approximate Reasoning, vol.53, pp.137-139, 2012.

D. Mercier, B. Quost, and T. Denoeux, Refined modeling of sensor reliability in the belief function framework using contextual discounting. Information Fusion, vol.9, pp.246-258, 2008.

F. Pichon, On the a-conjunctions for combining belief functions, Belief Functions: Theory and Applications, vol.164, pp.285-292, 2012.

F. Pichon, S. Destercke, and T. Burger, A consistency-specificity trade-off to select source behavior in information fusion, IEEE Transactions on Cybernetics, vol.45, issue.4, pp.598-609, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01078970

F. Pichon, D. Dubois, and T. Denoeux, Relevance and truthfulness in information correction and fusion, International Journal of Approximate Reasoning, vol.53, issue.2, pp.159-175, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00656775

F. Pichon, C. Labreuche, B. Duqueroie, and T. Delavallade, Multidimensional approach to reliability evaluation of information sources, Information Evaluation, pp.129-156, 2014.

F. Pichon, D. Mercier, E. Lefèvre, and F. Delmotte, Proposition and learning of some belief function contextual correction mechanisms, International Journal of Approximate Reasoning, vol.72, pp.4-42, 2016.

J. Schubert, Conflict management in Dempster-Shafer theory using the degree of falsity, International Journal of Approximate Reasoning, vol.52, issue.3, pp.449-460, 2011.

G. Shafer, A mathematical theory of evidence, 1976.

P. Smets, Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem, International Journal of Approximate Reasoning, vol.9, issue.1, pp.1-35, 1993.

P. Smets, The a-junctions: combination operators applicable to belief functions, First International Joint Conference on Qualitative and Quantitative Practical Reasoning (ECSQARU-FAPR'97), vol.1244, pp.131-153, 1997.

P. Smets, The transferable belief model for quantified belief representation, Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol.1, pp.267-301, 1998.

P. Smets and R. Kennes, The Transferable Belief Model, Artificial Intelligence, vol.66, pp.191-243, 1994.
URL : https://hal.archives-ouvertes.fr/hal-01185821

. Ph and . Smets, Managing deceitful reports with the transferable belief model, 8th International Conference on Information Fusion, 2005.

Y. Yang, D. Han, and C. Han, Discounted combination of unreliable evidence using degree of disagreement, International Journal of Approximate Reasoning, vol.54, issue.8, pp.1197-1216, 2013.