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REFINEMENT INVARIANCE OF INTERSECTION

(CO)HOMOLOGIES

MARTINTXO SARALEGI-ARANGUREN

Abstract. We prove the refinement invariance of several intersection (co)homologies
existing in the literature: Borel-Moore, Blown-up, the classical one, . . . These (co)homo-
1logies have been introduced in order to establish the Poincaré Duality in various con-
texts. In particular, we retrieve the classical topological invariance of the intersection
homology as well as several refinement invariance results already known.

Let us consider a topological space X supporting two stratifications S and T . We
say that pX,Sq is a refinement of pX, T q if each stratum of T is a union of strata of
S. In this work we answer the following question about the invariance property of the
intersection homology:

Can we find two perversities p and q such that
the identity I : X Ñ X induces the isomorphism

H
p

˚
pX,Sq – H

q

˚
pX, T q? (1)

For pseudomanifolds and using the original Goresky-MacPherson perversities, an an-
swer comes directly from the topological invariance of the intersection homology [15,
Corollary pag. 148] (see also [19, Theorem 9]): it suffices to take p “ q. In other words,
the intersection homology does not depend on the chosen stratification. We work in a
more general setting.

‚ Spaces. We do not work with pseudomanifolds, but with the more general notion
of CS-set (cf. Section 3). They are locally cone-like spaces, but their links are not
necessarily pseudomanifolds.

‚ Perversities (cf. Paragraph 1.3). We deal with the more general notion of per-
versity introduced by MacPherson in [21]: the M-perversities. This kind of perversity p
associates a number ppSq P Z “ Z \ t´8,8u to any stratum S of the CS-set, while a
classical perversity p associates a number ppcodimSq to the codimension of the stratum.
An M -perversity strongly depends on the stratification and so the topological invariance
of the related intersection homology does not apply.

‚ (Co)homologies (cf. Section 1). We consider not only the intersection homology

H
p

˚
, but also the following:
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2 MARTINTXO SARALEGI-ARANGUREN

+ Intersection cohomologies H
˚

p
, H

˚

p,c
. The intersection cohomology H

˚

p
is the

cohomology of the complex defined by using the functor Hom over intersection chains.
The version with compact supports is H

˚

p,c
.

+ Tame intersection homology H
p

˚
. A variation of the intersection homology

avoiding intersection chains who live in singular strata. We have H
p

˚
“ H

p

˚
when p

is smaller than the top perversity t. This homology is isomorphic to the blown-up
intersection cohomology with compact supports H

˚

p,c
through the Poincaré duality [5]

when one works with pseudomanifolds.
+ Tame intersection cohomologies H

˚

p
,H

˚

p,c
. The tame intersection cohomology

H
˚

p
is the cohomology of the complex defined by using the functor Hom over tame

intersection chains. The version with compact supports is H
˚

p,c
. We have H

˚

p
“ H

˚

p
and

H
˚

p,c
“ H

˚

p,c
when p ď t. The cohomology H

˚

p,c
is dual to H

Dp

n´˚
through the Poincaré

duality [14, 8] when the coefficient is a field1 and one works with pseudomanifolds. The

cohomology H
˚

p
is isomorphic to the de Rham intersection cohomology through the de

Rham duality [22]. Here, we use real coefficients.

+ Borel-Moore intersection homology H
BM,p

˚
. Similar to the intersection ho-

mology using locally finite chains instead of finite chains.

+ Borel-Moore tame intersection homology H
BM,p

˚
. Similar to H

˚

p
using locally

finite chains instead of finite chains. We have H
BM,p

˚
“ H

BM,p

˚
when p ď t.

+ Blown-up intersection cohomologies H
˚

p
,H

˚

p,c
. These cohomologies are de-

fined by using simplicial cochains, inspired by Dennis Sullivan’s approach to rational
homotopy theory. The compact supports version H

˚

p,c
(resp. closed supports version

H
˚

p
) is isomorphic to the tame intersection homology H

p

n´˚
(resp. Borel-Moore tame

intersection homology H
BM,p

n´˚
) through the Poincaré duality [3] (resp. cf. [23]) when one

works with pseudomanifolds. We have H
˚

p
“ H

˚

Dp
and H

˚

p,c
“ H

˚

Dp,c
when the coefficient

ring is a field1 (cf. [3, Theorem F] and [5, Corollary 13.1]).

In this paper, we give two answers to the question (1).

´ Pull-back. Given a perversity q on pX, T q we take p the pull-back perversity I‹q on
pX,Sq (cf. Paragraph 1.3). We prove

H
I‹q

˚
pX,Sq – H

q

˚
pX, T q,

and similarly for the other (co)homologies used in this work (cf. Theorem B).

´ Push-forward. Given a perversity p on pX,Sq we take q the push-forward perversity
I‹p on pX, T q (cf. Paragraph 1.3). We prove

H
p

˚
pX,Sq – H

I‹p

˚
pX, T q,

and similarly for the other (co)homologies used in this work (cf. Theorem A). In this
case, we need the following conditions on p:

(K1) ppQq ď ppSq ď ppQq ` tpSq ´ tpQq,

1 In fact, following [17], locally p-torsion free.
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for any strata S,Q P S with S Ă Q and S,Q Ă T for some stratum T P T , and

(K2) ppQq “ ppSq,

for any strata S,Q P S with dimS “ dimQ and S,Q Ă T for some stratum T P T 2.
These results encompass some other already known results about invariance of inter-

section (co)homology:

- The topological invariance of H
p

˚
for pseudomanifolds [15] and CS-sets [19, 13].

- The topological invariance of H
p

˚
and H

BM,p

˚
for pseudomanifolds [9, 11].

- The topological invariance of H
˚

p
and H

˚

p,c
for CS-sets [3, 5].

- The refinement invariance ofH
p

˚
for PL-pseudomanifolds [24] usingM -perversities.

- The refinement invariance of H
p

˚
and H

p

˚
for CS-sets [6] using M -perversities.

Recently, the topological invariance of the intersection homology has been extended
to the more general setting of the torsion sensitive intersection homology (cf. [12]).

We end this introduction by giving an idea of the proof of Theorems A and B. The
original proof of the classical topological invariance of the intersection homology given
by King in [19] uses the intrinsic stratification S˚. He proves that the identity map
I : X Ñ X induces an isomorphism between the intersection homology of pX,Sq and
that of pX,S˚q. This gives the topological invariance since S˚ “ T ˚.

The proof uses the Mayer-Vietoris technique in order to reduce the question to a local
one. Near a point x of X the identity I : pX,Sq Ñ pX,S˚q becomes the stratified map

h : c̊pSm ˚ Lq Ñ Bm`1 ˆ c̊L (2)

(cf. (10)). Here, Bm`1 “ tz P Rm`1 | ||z|| ă 1u and L denotes the link of x. Using the
usual local calculations of intersection homology one proves that h is a quasi-isomorphism
for this homology.

In our context, we don’t know wether the the identity map I : pX,Sq Ñ pX, T q has
the nice local description (2). We proceed in a different way. We construct a finite
sequence of CS-sets

pX,Sq “ pX,R0q
I
ÝÑ pX,R1q

I
ÝÑ ¨ ¨ ¨ pX,R`´1q

I
ÝÑ pX,R`q “ pX, T q, (3)

where each step is a refinement having the (2)-local description (called simple refine-
ment). Now, we can follow the procedure of [19] in order to get the isomorphism between
the intersection homologies of pX,Sq and pX, T q.

The construction of this sequence uses the fact that any stratum of S P S is included
in a stratum T P T . This gives the following dichotomy: S is a source stratum if
dimS “ dimT and S is a virtual stratum if dimS ă dimT . Somehow, the virtual strata
of S disappear in T while source strata become larger. The first step in the construction
of the above sequence is to eliminate the maximal virtual strata of S. In this way, we
obtain in the CS-set pX,R1q. We continue applying this principle to the refinement

pX,R1q
I
ÝÑ pX, T q and we eventually get (3).

What do we mean by “eliminate”? Let us suppose that S P S is the unique virtual
stratum. There exist two source strata R0, R1 P S with T “ S Y R0 Y R1 (maybe

2 Remark 4.9 gives a relation between classical perversities and those verifying (K1), (K2).
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R0 “ R1). We replace the strata S,R0, R1 of S by the stratum T in order to get
R1, that is, R1 “ tQ P S | Q ‰ S,R0, R1u Y tT u (cf. Example 2.7 for a richer
situation). A similar phenomenon appears in (2), relatively to S “ tapex of c̊pSm ˚ Lqu
and T “ Bm`1 ˆ tapex of c̊Lu.

Exceptional strata are singular strata of S included in regular strata1 of T . For
example, the apex of the open cone of the sphere S0 (which is indeed an open interval)
is an exceptional stratum if we take T the one-stratum stratification of that interval.
This example is a limit case for the refinement invariance results we establish in this
work (see Remark 4.7).

For a topological space X, we denote by cX “ X ˆ r0, 1s{pX ˆ t0uq the cone on X
and c̊X “ X ˆ r0, 1r{pX ˆ t0uq the open cone on X. A point of the cone is denoted by
rx, ts. The apex of the cone is v “ r´, 0s.

We shall write Bm “ tz P Rm | ||z|| ă 1u and Dm “ tz P Rm | ||z|| ď 1u, m P N.

Acknowledgements. We thank the anonymous referee for her/his comments and sug-
gestions.
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1. Intersection homologies and cohomologies (filtered spaces)

We present the homologies and cohomologies studied in this work. We
review their main computational properties which we are going to use in
the proof of Theorems A and B.

1.1. Filtered spaces. A filtered space is a Hausdorff topological space endowed with a
filtration by closed sub-spaces

H “ X´1 Ď X0 Ď X1 Ď . . . Ď Xn´1 ( Xn “ X.

The formal dimension of X is dimX “ n. Any non-empty connected component S of
a XizXi´1 is a stratum. We say that i is the formal dimension of S, written i “ dimS.
We denote by S the family of strata. In order to avoid confusion we also write pX,Sq the
filtered space. The n-dimensional strata are the regular strata, other strata are singular
strata. The family of singular strata is denoted by Ssing. Their union is the singular
part Σ.

A continuous map f : pX,Sq Ñ pY, T q between two filtered spaces is a stratified map

if for each S P S there exists S
f
P T with fpSq Ă S

f
and codimS

f
ď codimS. The map

f is a stratified homeomorphism if f is a homeomorphism and f´1 is a stratified map.
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1.2. Examples. Unless expressly stated otherwise, a manifold M is endowed with the
filtration H Ď M . The associated filtration is denoted by I “ tMccu, where cc denotes
connected component. Consider pX,Sq a filtered space.

+ An open subset U Ă X inherits the induced filtration Ui “ U XXi. The associated
induced stratification is SU “ tpS X Uqcc | S P Su. We write pU,Sq instead of pU,SU q.

+ Given an m-dimensional manifold M the product M ˆ X inherits the product
filtration pM ˆ Xqi “ M ˆ Xi´m. The associated product stratification is I ˆ S “

tMcc ˆ S | S P Su.
+ The cone c̊X inherits the cone filtration c̊Xi “ c̊Xi´1, with the convention c̊H “

tvu. The associated cone stratification is c̊S “ ttvuu \ tSˆs0, 1r, S P Su.
+ Let m P N. We consider the join Sm ˚X “ Dm`1 ˆX{ „, where the equivalence

relation is generated by pz, xq „ pz, x1q if ||z|| “ 1. An element of Sm ˚X is denoted by
rz, ts. We identify Sm with trz, xs { ||z|| “ 1u and X with tr0, xs { x P Xu. The join
Sm ˚X is endowed with the join filtration Sm Ă Sm ˚X0 ¨ ¨ ¨ Ă Sm ˚Xn´1 ( Sm ˚Xn.
The associated join stratification is S‹m “ tSm, Bm`1 ˆ S | S P Su.

1.3. Perversities. Consider pX,Sq a filtered space. A M -perversity, or simply perver-
sity, on pX,Sq is a map p : S Ñ Z “ Z \ t´8,8u verifying ppSq “ 0 for any regular
stratum [21].

The top perversity is the perversity defined by tpSq “ codimS ´ 2 for each singular
stratum S. The dual perversity of p is the perversity Dp defined by Dp “ t´ p.

A perverse space is a triple pX,S, pq where pX,Sq is a filtered space and p is a per-
versity on pX,Sq. Given a stratified map f : pX,Sq Ñ pY, T q, a perversity q on pY, T q
and a perversity p on pX,Sq, we define

‚ the pull-back perversity f‹q on pX,Sq by: f‹qpSq “ qpS
f
q for each S P Ssing,

‚ the push-forward perversity f‹p on pX, T q by: f‹ppT q “ mintppQq | Q
f
“ T u for

each T P T sing, with infH “ 8.
Notice that f‹f‹p ď p.

We make a quick reminder of the intersection homologies/cohomologies deployed in
this work. They have been mainly introduced in order to study the Poincaré duality of
the intersection (co)homology in different contexts.

1.4. Tame and intersection (co)homologies. (cf. [5, 6]). We fix an n-dimensional
perverse space pX,S, pq. Tame intersection homology is a variant of the classic intersec-
tion homology (cf. [15, 16, 19]). When the perversity p is greater than the top perversity
it is possible to have a p-intersection chains contained in the singular part Σ of X. This
fact prevents the Poincaré duality and the de Rham Theorem. For this reason the tame
intersection homology was introduced (cf. [6, 5, 8, 22]).

A filtered simplex is a singular simplex σ : ∆ Ñ X where the euclidean simplex ∆
is endowed with a filtration ∆ “ ∆0 ˚ ∆1 ˚ ¨ ¨ ¨ ˚ ∆n, called σ-decomposition, verifying
σ´1Xi “ ∆0 ˚∆1 ˚ ¨ ¨ ¨ ˚∆i, for each i P t0, . . . , nu. A factor ∆i can be empty with the
convention H˚ Y “ Y . The filtered simplex σ is a regular simplex when Imσ Ć Σ, that
is, ∆n ‰ H.

We decompose the boundary of a filtered simplex ∆ “ ∆0 ˚ ¨ ¨ ¨ ˚∆n as B∆ “ Breg∆`
Bsing∆, where Breg∆ contains all the regular simplices.
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The perverse degree of the filtered simplex σ relatively to a stratum S P SF is

}σ}S “

"

´8, if S X Imσ “ H,
dimp∆0 ˚ ¨ ¨ ¨ ˚∆dimSq, otherwise.

A filtered simplex σ : ∆ Ñ X is p-allowable if }σ}S ď dim ∆ ´ codimS ` ppSq, for
each S P S. Moreover, if Imσ Ć Σ then the simplex σ is said to be p-tame.

The chain complex C
p

˚
pX;Sq is the G-module formed of the linear combinations

ξ “
ř

jPJ njσj , where each σj is p-allowable, and such that Bξ “
ř

`PL n`τ`, where

the simplices τ` are p-allowable. We call pC
p

˚
pX;Sq, Bq the p-intersection complex and

its homology, H
p

˚
pX;Sq, the p-intersection homology. This designation is justified since

this homology matches with the usual intersection homology (cf. [6, Theorem A]).

The chain complex C
p

˚
pX;Sq is the G-module formed of the linear combinations ξ “

ř

jPJ njσj , with each σj is p-tame, and such that Bregξ “
ř

`PL n`τ`, where the simplices

τ` are p-tame. We call pC
p

˚
pX;Sq, d “ Bregq the tame p-intersection complex and its

homology, H
p

˚
pX;Sq, the tame p-intersection homology. This designation is justified

since this homology matches with the usual tame intersection homology (cf. [6, Theorem

B]). We have H
p

˚
pX;Sq “ H

p

˚
pX;Sq when p ď t (cf. [6, Remark 3.9]).

Associated cohomology is defined by using the functor Hom, as usual in algebraic

topology. We put the dual complexes C
˚

p
pX;Sq “ hompC

p

˚
pX;Sq;Sq and C

˚

p
pX;Sq “

hompC
p

˚
pX;Sq;Sq endowed with the dual differential d. Their cohomologies are the

p-intersection cohomology H
˚

p
pX;Sq and the p-tame intersection cohomology H

˚

p
pX;Sq.

Let U Ă X be an open subset . The relative homologies H
p

˚
pX,U ;Sq and H

p

˚
pX,U ;Sq

are defined from quotient complexes C
p

˚
pX,U ;Sq “ C

p

˚
pX;Sq{Cp

˚
pU ;Sq and C

p

˚
pX,U ;Sq “

C
p

˚
pX;Sq{Cp

˚
pU ;Sq ([6, Definition 4.5]). The relative cohomologies H

˚

p
pX,U ;Sq and

H
˚

p
pX,U ;Sq are defined by using the functor Hom (cf. [8, Definition 7.1.1]).

The (tame) intersection cohomology with compact supports are defined by

H
˚

p,c
pX;Sq “ lim

ÝÑ
KĂX

H
˚

p
pX,XzK;Sq and H

˚

p,c
pX;Sq “ lim

ÝÑ
KĂX

H
˚

p
pX,XzK;Sq, (4)

where K runs over the compact subsets of X (cf. [14, Definition 6.1]).

1.5. Main properties for (tame) intersection (co)homology. We group here the
main properties of the (tame) intersection homology. We fix a perverse set pX,S, pq.

a. Mayer-Vietoris. Associated to an open cover tU, V u of X we have the long exact
sequences

¨ ¨ ¨ Ñ H
p

k`1
pX;Sq Ñ H

p

k
pU X V ;Sq Ñ H

p

k
pU ;Sq ‘Hp

k
pV ;Sq Ñ H

p

k
pX;Sq Ñ ¨ ¨ ¨ ,

¨ ¨ ¨ Ñ H
p

k`1
pX;Sq Ñ H

p

k
pU X V ;Sq Ñ H

p

k
pU ;Sq ‘ H

p

k
pV ;Sq Ñ H

p

k
pX;Sq Ñ ¨ ¨ ¨ ,

(cf. [6, Proposition 4.1]).

b. Local calculations. We have the isomorphisms H
p

˚
pRm ˆX, I ˆ Sq “ H

p

˚
pX,Sq

and H
p

˚
pRm ˆX, I ˆ Sq “ H

p

˚
pX,Sq where the isomorphism comes from the canonical
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projection pr : Rm ˆ X Ñ X. (cf. [6, Corollary 3.14]). If L is compact, we have the
isomorphisms

H
p

k
pRm ˆ c̊L, I ˆ c̊Sq “

$

&

%

H
p

k
pL,Sq if k ď Dppvq,
0 if 0 ‰ k ą Dppvq,
G if 0 “ k ą Dppvq,

H
p

k
pRm ˆ c̊L, I ˆ c̊Sq “

"

H
p

k
pL;Sq if k ď Dppvq,
0 if k ą Dppvq

where the isomorphisms (first line) come from the inclusion ι : LÑ Rm ˆ c̊L defined by
ιpxq “ p0, rx, 1{2sq (cf. [6, Proposition 5.1]).

c. Join. Suspension Using the above calculation (see also [7, Lemma 3.6]), one gets:

H
p

k
pSm ˚X,S‹mq “

$

’

’

&

’

’

%

H
p

k
pX,Sq if k ď DppSmq,
G if 0 “ k ą DppSmq,
0 if DppSmq ă k ď DppSmq `m` 1, k ‰ 0

rH
p

k´m´1
pX,Sq if k ě DppSmq `m` 2, k ‰ 0

H
p

k
pSm ˚X,S‹mq “

$

&

%

H
p

k
pX;Sq if k ď DppSmq, ,

0 if DppSmq ă k ď DppSmq `m` 1,

H
p

k´m´1
pX,Sq if k ě DppSmq `m` 2,

where the isomorphism comes from the inclusion ι : X Ñ Sm ˚X defined by ιpxq “ r0, xs
Let us look at the case m “ 0, that is, the suspension ΣX. Previous calculations suppose
that the perversity p takes the same value at the north pole n and at the south pole s.
In the general case, if ppsq ě ppnq, we have

H
p

k

`

S0 ˚X,S‹0
˘

“

$

’

’

&

’

’

%

H
p

k
pX,Sq if k ď Dppsq,
G if 0 “ k ą Dppsq,
0 if Dppsq ă k ď Dppnq ` 1, k ‰ 0

rH
p

k´1
pX,Sq if k ě Dppnq ` 2, k ‰ 0

H
p

k

`

S0 ˚X,S‹0
˘

“

$

&

%

H
p

k
pX;Sq if k ď Dppsq, ,

0 if Dppsq ă k ď Dppnq ` 1,

H
p

k´1
pX,Sq if k ě Dppnq ` 2,

d. Relative homologies. Let U be an open subset of X. We have the associated
long exact sequences for homology

¨ ¨ ¨ Ñ H
p

k
pU ;Sq Ñ H

p

k
pX;Sq Ñ H

p

k
pX,U ;Sq Ñ H

p

k´1
pU ;Sq Ñ ¨ ¨ ¨ ,

¨ ¨ ¨ Ñ H
p

k
pU ;Sq Ñ H

p

k
pX;Sq Ñ H

p

k
pX,U ;Sq Ñ H

p

k´1
pU ;Sq Ñ ¨ ¨ ¨

(cf. [6, Definition 4.5]) and for cohomology

¨ ¨ ¨ Ñ H
k

p
pX,U ;Sq Ñ H

k

p
pX;Sq Ñ H

k

p
pU ;Sq Ñ H

k`1

p
pX,U ;Sq Ñ ¨ ¨ ¨

¨ ¨ ¨ Ñ H
k

p
pX,U ;Sq Ñ H

k

p
pX;Sq Ñ H

k

p
pU ;Sq Ñ H

k`1

p
pX,U ;Sq Ñ ¨ ¨ ¨
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(cf. [8, Theorem 7.1.11])3.

e. Universal Coefficients Theorem. There are two natural exact sequences

0 Ñ ExtpH
p

k´1
pX;Sq, Rq Ñ H

k

p
pX;Sq Ñ HompH

p

k
pX;Sq, Rq Ñ 0,

0 Ñ ExtpH
p

k´1
pX;Sq, Rq Ñ H

k

p
pX;Sq Ñ HompH

p

k
pX;Sq, Rq Ñ 0,

for every k P N. We find the proof of the second assertion in [8, Proposition 7.1.4]. But
the proof is the same for the first sequence.

1.6. Intersection homology from Borel-Moore point of view (cf. [10, 23]). The

Borel-Moore p-intersection homology H
BM,p

˚
pX;Sq and the Borel-Moore p-tame inter-

section homology H
BM,p

˚
pX;Sq are defined in the same way as the homologies defined in

1.4 have been defined but considering locally finite chains instead of finite chains.

When X is compact, we have H
BM,p

˚
pX;Sq “ H

p

˚
pX;Sq and H

BM,p

˚
pX;Sq “ H

p

˚
pX;Sq.

1.7. Main properties for Borel-Moore (tame) intersection homology. We sup-
pose that X is a hemicompact space, that is, there exists an increasing sequence of
compact subsets K0 Ă K1 Ă ¨ ¨ ¨Kn Ă ¨ ¨ ¨ such that, each compact K Ă X is included
on some Kn. We have proved in [7, Proposition 2.2] that the Borel-Moore intersection
homology can be computed in terms of the intersection homology in the following way4:

H
BM,p

˚
pXq “ lim

ÐÝ
nPN

H
p

˚
pX,XzKnq and H

BM,p

˚
pXq “ lim

ÐÝ
nPN

H
p

˚
pX,XzKnq. (5)

1.8. Blown-up intersection cohomologies (cf. [3]). Let N˚p∆q and N
˚

p∆q be the
simplicial chain and cochain complexes of an euclidean simplex ∆, with coefficients in
R. For each simplex F P N˚p∆q, we write 1F the element of N

˚

p∆q taking the value 1
on F and 0 otherwise. Given a face F of ∆, we denote by pF, 0q the same face viewed as
face of the cone c∆ “ ∆ ˚ rws and by pF, 1q the face cF of c∆. Here, rws “ pH, 1q “ cH

is the apex o f the cone c∆. Cochains on the cone are denoted 1pF,εq for ε “ 0 or 1. For
defining the blown-up intersection complex, we first set

rN
˚

p∆q “ N˚pc∆0q b ¨ ¨ ¨ bN
˚pc∆n´1q bN

˚p∆nq.

A basis of rN
˚

p∆q is composed of the elements 1pF,εq “ 1pF0,ε0qb¨ ¨ ¨b1pFn´1,εn´1qb1Fn ,
where εi P t0, 1u and Fi is a face of ∆i for i P t0, . . . , nu or the empty set with εi “ 1 if
i ă n. We set |1pF,εq|ąs “

ř

iąspdimFi ` εiq, with the convention dimH “ ´1.

Let ` P t1, . . . , nu and 1pF,εq P rN
˚

p∆q. The `-perverse degree of 1pF,εq P N
˚

p∆q is

}1pF,εq}` “

"

´8 if εn´` “ 1,
|1pF,εq|ąn´` if εn´` “ 0.

Given ω “
ř

b λb 1pFb,εbq P
rN

˚

p∆q with 0 ‰ λb P R for all b, the `-perverse degree is

}ω}` “ max
b
}1pFb,εbq}`.

3Only the tame case is considered in this reference but the non-tame case can be treated in the same
way.

4In the op.cit. the result is proved for the Borel-Moore tame intersection homology. The same proof
works for the Borel-Moore intersection homology.
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By convention, we set }0}` “ ´8.

Let σ : ∆ “ ∆0 ˚ ¨ ¨ ¨ ˚ ∆n Ñ X be a filtered simplex. We set rN
˚

σ
“ rN

˚

p∆q. If
δ` : ∆1 Ñ ∆ is an inclusion of a face of codimension 1, we denote by B`σ the filtered
simplex defined by B`σ “ σ ˝ δ` : ∆1 Ñ X. If ∆ “ ∆0 ˚ ¨ ¨ ¨ ˚∆n is filtered, the induced
filtration on ∆1 is denoted ∆1 “ ∆1

0 ˚ ¨ ¨ ¨ ˚∆1
n. The blown-up intersection complex of X

is the cochain complex rN
˚

pXq composed of the elements ω associating to each regular

filtered simplex σ : ∆0 ˚ ¨ ¨ ¨ ˚ ∆n Ñ X an element ωσ P rN
˚

σ
such that δ˚` pωσq “ ωB`σ,

for any face operator δ` : ∆1 Ñ ∆ with ∆1
n ‰ H. The differential dω is defined by

pdωqσ “ dpωσq. The perverse degree of ω along a singular stratum S equals

}ω}S “ sup t}ωσ}codimS | σ : ∆ Ñ X regular simplex such that Imσ X S ‰ Hu .

We denote }ω} the map S ÞÑ ||ω||S , where ||ω||S “ 0 if S is a regular stratum. A cochain

ω P rN
˚

pX;Sq is p-allowable if }ω} ď p and of p-intersection if ω and dω are p-allowable.

We denote rN
˚

p
pX;Sq the complex of p-intersection cochains and H

p

˚
pX;Sq its homology

called blown-up intersection cohomology of X for the perversity p.

A subset K Ă X is a support of the cochain ω P rN
˚

p
pX;Sq if ωσ “ 0, for any regular

simplex σ : ∆ Ñ X such that Imσ XK “ H. We also say that ω ” 0 on XzK.

We denote rN
˚

p,c
pX;Sq the complex of p-intersection cochains with compact supports

and H
˚

p,c
pX;Sq its cohomology.

1.9. Main properties for blown up intersection cohomologies. We group here the
main properties of blown-up intersection cohomology. We fix a perverse space pX,S, pq.

a. Mayer-Vietoris. Suppose X paracompact. Given an open cover tU, V u of X we
have the long exact sequence (cf. [3, Corollary 10.1])

¨ ¨ ¨ Ñ H
k

p
pX;Sq ÑH

k

p
pU ;Sq ‘H

˚

p
pV ;Sq ÑH

k

p
pU X V ;Sq ÑH

k`1

p
pX;Sq Ñ ¨ ¨ ¨ .

b. Local calculations. We have the isomorphism

H
k

p
pRm ˆX, I ˆ c̊Sq “H

k

p
pX, Iq,

coming from the inclusion ι : X Ñ Rm ˆX defined by ιpxq “ p0, xq (cf. [3, Theorem D]). If L is
compact, we have the isomorphism

H
k

p
pRm ˆ c̊L, I ˆ Sq “

"

H
k

p
pL,Sq if k ď ppvq,

0 if k ą ppvq,

where the isomorphism (first line) comes from the inclusion ι : L Ñ Rm ˆ c̊L defined by ιpxq “
p0, rx, 1{2sq (cf. [3, Theorem E]).

c. Join. Using the above calculations, one gets the isomorphism:

H
k

p
pSm ˚X,S‹m`1q “

$

’

&

’

%

H
k

p
pX,Sq if k ď ppSmq,

0 if ppSmq ă k ď ppSmq `m` 1,

H
k´m´1

p
pX,Sq if k ě ppSmq `m` 2,

where the first isomorphism comes from the inclusion ι : X Ñ Sm ˚X defined by ιpxq “ r0, xs.

d. Relative cohomology. We consider an open subset U Ă X. The complex of relative

p-intersection cochains is rN
˚

p
pX,U ;Sq “ rN

˚

p
pX;Sq ‘ rN

˚´1

p
pU ;Sq, endowed with the differential
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Dpα, βq “ pdα, α ´ dβq. Its homology is the relative blown-up p-intersection cohomology of the

perverse pair pX,U, pq, denoted by H
˚

p
pX,Uq.

By definition, we have a long exact sequence associated to the perverse pair pX,U, pq:

. . .Ñ H
i

p
pX;Sq ı‹

Ñ H
i

p
pU ;Sq ÑH

i`1

p
pX,U ;Sq pr˚

Ñ H
i`1

p
pX;Sq Ñ . . . ,

where pr : rN
˚

p
pX,Uq Ñ rN

˚

p
pXq is defined by prpα, βq “ α and ı : rN

˚

p
pXq Ñ rN

˚

p
pUq is the

restriction map (cf. [3, Sec. 12.2]).

e. Injective limit. Analogously to the Borel-Moore intersection homology, the blown-up
intersection cohomology with compact supports can be computed through the relative blown-up
intersection cohomology by using an injective limit. Let us see that.

Proposition 1.1. Let pX,S, pq be a normal and hemicompact perverse space. Then, there exists
an isomorphism

H
˚

p,c
pX;Sq – lim

ÝÑ
KĂX

H
˚

p
pX,XzK;Sq,

where K runs over the family of compact subsets of X.

Proof. By hemicompactness there exists an increasing sequence of compact subsets tKnu with

K0 Ă intpK1q Ă K1 Ă intpK2q Ă K2 Ă ¨ ¨ ¨Kn Ă ¨ ¨ ¨ ,

and X “
Ť

ně0Kn. In particular, the family tKnu is cofinal in the family of compact subsets of
X. So, it suffices to prove that the chain map

B : rN
˚

p,c
pX;Sq Ñ lim

ÝÑ
nPN

rN
˚

p
pX,XzKn;Sq,

defined by Bpωq “ 〈pω, 0q,m〉, where Km is a compact support of ω, is a quasi-isomorphism.

An element 〈pα, βq,m〉 P lim
ÝÑnPN

rN
˚

p
pX,XzKn;Sq is characterized by these two properties:

- pα, βq PH
˚

p
pX,XzKm;Sq, and

- 〈pα, βq,m〉 “ 〈pα1, β1q,m1〉 if pα, βq “ pα1, β1q on rN
˚

p
pX,XzKm1 ;Sq if m ď m1.

We proceed in several steps.

‚ Step 1. Bump functions.

Since X is normal then, for each each n P N, we can find a continuous map fn : X Ñ r0, 1s
with fn ” 0 on Kn`1 and fn ” 1 on XzintpKn`2q. Associated to fn we have constructed a

cochain f̃n P rN
0

0
pX;Sq verifying f̃n ” 0 on Kn`1 and f̃n ” 1 on XzintpKn`2q (cf. [3, Lemma

10.2]). Consider the open covering Un “ tXzKn, intpKn`1qu of X. Notice that5,

γ P rN
˚

p
pXzKn;Sq ùñ f̃n ! γ P rN

˚,Un

p
pX;Sq and f̃n ! γ “ γ on XzKn`3. (6)

‚ Step 2. The operator B˚ is a monomorphism.

Let rωs P KerB˚. So, there exists m P N and 〈pγ, ηq,m〉 P rN
˚

p
pX,XzKm;Sq with Km compact

support of ω P rN˚p,cpX;Sq and 〈pω, 0q,m〉 “ 〈Dpγ, ηq,m〉 “ 〈pdγ, γ ´ dηq,m〉. In particular, we

get ω “ dγ on X and γ ´ dη “ 0 on KzKm.

We get the claim if we prove that ρUm,cpωq “ dθ for some θ P rN
˚,Um

p,c
pX;Sq (cf. [3, Theorem

B]). Here, ρUm,c : rN
˚

p,c
pX;Sq Ñ rN

˚,Um

p,c
pX;Sq is the canonical restriction. It suffices to consider

θ “ ρUmpγq ´ dpf̃m ! ηq, where ρUm : rN
˚

p,c
pX;Sq Ñ rN

˚,Um

p
pX;Sq is the canonical restriction,

since

5We refer the reader to (cf. [3, Section 4]) for the definition of the !-product.
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(i) f̃m ! η P rN
˚,Um

p
pX;Sq (cf. (6)).

(ii) γ ´ dpf̃m ! ηq
(6)
“ γ ´ dη “ 0 on XzKm`3, giving that Km`3 is a compact support of θ,

(iii) dθ “ dρUmpγq “ ρUmpωq “ ρUm,cpωq.

‚ Step 3. The operator BUm .

For each n,m P N we define rN
˚,Um

p
pX,XzKn;Sq “ rN

˚,Um

p
pX;Sq‘ rN

˚´1,Um

p
pXzKn;Sq (cf. [3,

Definition 9.6]). We consider the chain map

BUm : rN
˚,Um

p,c
pX;Sq Ñ lim

ÝÑ
nPN

rN
˚,Um

p
pX,XzKn;Sq,

defined by BUmpωq “ 〈pω, 0q, p〉Um , where Kp is a compact support of ω (cf. [5, Definition 2.6]).
We have the commutative diagram

rN
˚

p,c
pX;Sq B //

ρUm,c��

lim
ÝÑnPN

rN
˚

p
pX,XzKn;Sq
ρ1Um��

rN
˚,Um

p,c
pX;Sq BUm // lim

ÝÑnPN
rN
˚,Um

p
pX,XzKn;Sq

(7)

where the vertical maps are defined by restriction. Both are quasi-isomorphisms. It suffices to
apply [5, Proposition 2.6] (for the left one) and the fact that inductive limits commute with
cohomology and [3, Theorem B] (for the right one).

‚ Step 4. The operator B˚ is an epimorphism.

Let Ξ “ 〈pγ, ηq,m〉 P lim
ÝÑN

rN
˚

p
pX,XzK;Sq be a cycle. Then 〈Dpγ, ηq,m〉 “ 〈pdγ, γ ´ dηq,m〉 “

0. The cochain θ “ ρUmpγq ´ dpf̃m ! ηq is a cycle of rN
˚,Um

p,c
pX;Sq since (i), (ii) and dθ “

dρUmpγq “ 0. In fact,

BUm,˚rθs “ r〈pθ, 0q,m` 3〉Ums “
„〈
pρUmppγq ´ dpf̃m ! ηq, 0q,m` 3

〉
Um



“p1q

„〈
pρUmpγq, f̃m ! ηq,m` 3

〉
Um



“p2q r〈pρUmpγq, ηq,m` 3〉Ums

“ rρ1Ump〈pγ, ηq,m` 3〉qs “p3q rρ1Ump〈pγ, ηq,m〉qs “ ρ1˚UmrΞs.

where “p1q comes from Dpf̃m ! η, 0q “ pdpf̃m ! ηq,´f̃m ! ηq, “p2q from f̃m “ 1 on XzKm`2

and “p3q from the fact that η P rN˚p pXzKmq.

The properties of the previous diagram (7) give the existence of rωs P H
˚

p,c
pX;Sq with

ρ˚Um,crωs “ rθs verifying ρ1˚UmpB
˚rωsq “ BUm,˚pρ˚Um,crωsq “ BUm,˚rθs “ ρ1˚UmrΞs, which gives

rΞs “ B˚rωs. ♣

2. Stratified sets and refinements

A refinement of a stratified space pX,Sq is another stratified space pX, T q whose
strata are formed using the strata of the original stratification. We prove that
it is possible to go from S to T by modifying just a discrete family of strata:
the simple refinement.
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2.1. Stratified spaces. A stratified space6 is a Hausdorff topological space X endowed with a
partition S, whose elements are called strata, verifying the following conditions (S1)-(S6).

(S1) The family S is locally finite.
(S2) An element of S is a connected manifold.
(S3) Frontier Condition. Given two strata S, S1 P S, we have7: S X S1 ‰ H ùñ S Ă S1.
(S4) Given two strata S, S1 P S, we have: S X S1 ‰ H and S ‰ S1 ùñ dimS ă dimS1.
(S5) The family tdimS P Su is bounded.

Stratified and filtered spaces are related as follows.

Lemma 2.1. Let pX,Sq be a stratified space. Then the filtration H “ X´1 Ď X0 Ď X1 Ď . . . Ď
Xn´1 ( Xn “ X, given by

Xk “ \tS P S | dimS ď ku,

(cd. (S5)) defines a filtered space on X whose associated stratification is S.

Proof. For the first statement it suffices to prove that each Xk is a closed subset of X. Let us
consider x P Xk. Property (S1) gives x P Xk “ tS P S | dimS ď ku “ tS P S | dimS ď ku.
So, there exists S P S with x P S and dimS ď k. If S1 is the stratum of S containing x then
condition (S4) give dimS1 ď dimS and therefore x P Xk.

We have XkzXk´1 “ \tS P S | dimS “ ku. Again, conditions (S1) and (S4) imply that the
elements of the RHS of the equality are closed subsets of XkzXk´1. So, the stratification of the
filtered space is S. ♣

These are not equivalent notions since, for example, the strata of a filtered space are not
necessarily manifolds.

The relation S ĺ S1 defined by S Ă S1, is an order relation on S (see [4, Proposition A.22]).
The notation S ă S1 means S ĺ S1 and S ‰ S1. So, condition (S4) is equivalent to

(S4) S ă S1 ùñ dimS ă dimS1.

The depth of a family of strata S 1 Ă S is depthS 1 “ supti P N | DS0 ă S1 ă ¨ ¨ ¨ ă

Si with S0, . . . , Si P S 1u. Conditions (S4) and (S5) give

Lemma 2.2. Let pX,Sq be a stratified space. Then depthS 1 ă 8.

In this work we shall use the formula

S “ S \
ğ

QăS

Q. (8)

Let us see that. The inclusion Ą is clear. Let x P S. Consider Q P S containing x. Since
QX S ‰ H then we get Ă from (S3).

The examples of 1.2: induced, product, cone and join stratification, are also stratified spaces,
if we begin with a stratified space pX,Sq. Any point x P X, with txu R S, can be added as a
new stratum. This gives the stratification Sx “ txu \ tpSztxuqcc | S P Su.

The following result will be important for the understanding of the local structure of the
stratified spaces we are interested in.

Proposition 2.3. Let pX,Sq be a stratified space and let m P N˚. Then, there exists a stratified
homeomorphism

h : p̊cpSm ˚Xq, c̊S‹mq Ñ pBm`1 ˆ c̊X, pI ˆ c̊Sqp0,vqq. (9)

6This definition is not a standard one in all sources. For example, it is more restrictive than that of
[4, 8].

7This condition is equivalent to say that the closure of a stratum is the union of strata.
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Proof. We find in [2, 5.7.4] the homeomorphism h : c̊pSm ˚Xq Ñ Bm`1 ˆ c̊X : defined by

hprrz, ys, rsq “

#

p2rz, ry, rsq si ||z|| ď 1{2

prz{||z||, ry, 2rp1´ ||z||qsq si ||z|| ě 1{2.
(10)

Let us verify that h preserves the stratifications. We write u the apex of the cone c̊pSm ˚ Xq.
We distinguish three cases.

+ hpuq “ p0, vq.
+ hpSmˆs0, 1rq “ pBm`1 ˆ tvuqztp0, vqu since hprrz, ys, rs “ prz, vq if ||z|| “ 1.
+ The restriction h : Bm`1 ˆXˆs0, 1rÑ Bm`1 ˆXˆs0, 1r is given by

pz, y, rq ÞÑ

#

p2rz, y, rq si ||z|| ď 1{2

prz{||z||, y, 2rp1´ ||z||qq si ||z|| ě 1{2.

It is clearly a stratified homeomorphism. ♣

2.2. Refinements. We say that the stratified space pX,Sq is a refinement of the stratified space
pX, T q8, written pX,Sq Ÿ pX, T q, if S ‰ T and

(S6) @S P S DT P T such that S is embedded submanifold of T .

The stratum T is also denoted by S
I

. We have

dimS ď dimS
I

and codimS
I

ď codimS, for each S P S. (11)

Notice that
S,Q P S with S ĺ Q ùñ S

I

ĺ Q
I

(12)

(cf. (S3)). In this work, we shall distinguish several types of strata.

Definition 2.4. Let pX,Sq Ÿ pX, T q be a refinement. A stratum S P S is a source stratum if

dimS “ dimS
I

. In this case, we also say that S is a source stratum of T P T , if T “ S
I

. We
also use the following types of strata:

- A “ tS P S { dimS “ dimS
I

u: source strata.

- V “ tS P S { dimS ă dimS
I

u: virtual strata.

- M “ tmaximal strata of V with dimM
I

maximalu: v-maximal strata.

- O “ tS P A { DM PM with M ĺ S,M
I

“ S
I

u: stable strata.

The refinement pX,Sq Ÿ pX, T q is simple when depthV “ 0. We always have depthM “ 0.

Definition 2.5. Let pX,Sq Ÿ pX, T q be a refinement. A stratum S P Ssing is exceptional if

S
I

P T reg. Moreover, if codimS “ 1 we say that S is an 1-exceptional stratum.

Any exceptional stratum is a virtual stratum.

Definition 2.6. A simple decomposition of a refinement pX,Sq Ÿ pX, T q is a finite sequence of
simple refinements: pX,Sq “ pX,R0q Ÿ ¨ ¨ ¨ Ÿ pX,Rmq “ pX, T q.

Example 2.7. A key result of this work is the Proposition 2.10 giving the existence of simple
refinements. The relevance of these kind of refinements is given by Proposition 3.4, where we get
a nice local description of the a simple refinement in the framework of CS-sets.

Before proving these results, we give an example of a refinement pX,Sq ŸI pX, T q described
as composition of two simple refinements pX,Sq ŸJ pX,S 1q and pX,S 1q ŸK pX, T q through a
stratified space pX,S 1q.

8We also say that pX, T q is a coarsening of pX,Sq.
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‚

‚
Q2 Q3

‚
Q1

R1

S3

S1 S2

pX,Sq

R3 R2

J

I

Refinement J
AzO “ tQ1, Q2, Q3, R1, S1, S2u

V “M “ tS3u

O “ tR2, R3u

S1 S2

Q1

R4

Q2 Q3
R1

‚

pX,S 1q

‚

‚
K

pX, T q

Refinement I
AzO “ tQ3, R1, S1, S2u

VzM “ tQ1, Q2u

M “ tS3u

O “ tR2, R3u

S4

R4

R5

pX, T q

Q3
‚

Refinement K
AzO “ tQ3, R4u

V “M “ tQ1, Q2u

O “ tR1, S1, S2u

In the simple refinement J (resp. K) a stratum of M melts into a stratum of S 1 (resp. T ) and,
for each of them, 1 or 2 strata of O also disappear into a bigger stratum with same dimension:
S3, R2, R3  R4 (resp. Q1, S1, S2  S or Q2, R1  R5). Among the strata of V those of M are
the first to disappear.

The objective of the following Lemmas is to prove Proposition 2.10: a refinement can be
decomposed as a sequence of simple refinements.

Lemma 2.8. Let pX,Sq ŸI pX, T q be a refinement with S ‰ T . Then

(a) M ‰ H.

(b) For each S P S there exists a source stratum P P S of S
I

with S ĺ P .
(c) Given two strata R,Q P T with R ĺ Q there exist two source strata R1, Q1 P S of R and Q

respectively with R1 ĺ Q1.

Proof. (a) Since S ‰ T then there exists a stratum S P S with S ‰ S
I

. If M “ H then

V “ H and then S
I

“ \tP P A | P
I

“ S
I

u, open connected subsets of S
I

(cf. (S6)). By

connectedness of S
I

we conclude that tP P A | P I

“ S
I

u contains just one element, necessarily

S. The contradiction S
I

“ S implies that M ‰ H.
(b) By definition we have

S
I

“ \tP P A | P
I

“ S
I

u \

´

\tP P V | P
I

“ S
I

u

¯

, (13)

where the elements of the first term are open subsets of S
I

. This decomposition is locally finite

(cf. (S1)). By dimension reasons, O “ \tP P A | P I

“ S
I

u “ \tsource strata of S
I

u is an open

dense subset of S
I

(cf. (S4), (S6)). Condition S Ă O implies the existence of a source stratum

P of S
I

with S X P ‰ H. Property (S3) gives (b).
(c) Item (b) gives a source stratum R1 P S of R. Since \ {source strata of Q} “ \iPIQi is an

open dense subset of Q then R1 Ă R Ă Q “ \iPIQi “pS1q YiPIQi. So, there exists Qi P S, source

stratum of Q, with R1XQi ‰ H. Since R1 ĺ Qi (cf. (S3)) we end the proof taking Q1 “ Qi. ♣
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The subsets M
I

we study now play an important rôle in the construction of the simple de-
composition of a refinement. They are the new strata on the first step of this decomposition.

Lemma 2.9. Let pX,Sq ŸI pX, T q be a refinement. Consider a stratum M PM. We define

M
I
“ \tQ | Q P O \M and Q

I

“M
I

u.

Then

(a) M
I

is a connected open subset of M
I

.

(b) Q is an embedded sub-manifold of M
I
, if Q PM and Q

I

“M
I

, and

(c) Q is an open subset of M
I
, if Q P O and Q

I

“M
I

.

Proof. Without loss of generality we can suppose X “M
I

. We have S
I

“M
I

for each S P S.
(a) The subset F “ \tS P VzMu is a closed subset of X (cf. (8) and (S4)) not meeting M

I
.

Given S P VzM we have dimS ‰ dimX (since S P V) and dimS ‰ dimX ´ 1 (since S R Mq.
Then, F it is a locally finite union of sub-manifolds of X whose codimension is at least 2 (cf.

(S1), (S4)). So, Y “ XzF is a S-saturated connected open subset of M
I

containing M
I
.

By construction, we have VY “ M, that is, SY “ M \ A. Let us suppose A ‰ O. By
dimension reasons, if S P AzO then S “ S (cf. (8) and (S4)). Property (S2) gives S “ Y and
then S “ M which is impossible. So, SY “ M \ O. Then M

I
“ Y which is a connected open

subset of M
I

.
(b) Condition (S6) implies that Q is an embedded sub-manifold of M

I

. Since Q Ă M
I

then
(a) gives the result.

(c) Finally, dimQ “ dimQ
I

“ dimM
I

implies that Q is an open subset of M
I

(cf. (S6)).
Since Q ĂM

I
, condition (a) gives (c). ♣

Proposition 2.10. Any refinement pX,Sq Ÿ pX, T q, with S ‰ T , has a simple decomposition.

Proof. Let us define dS,T “ dimM
I

where M P M. This number is independent of the choice
of M by definition of M. Condition S ‰ T implies M ‰ H (cf. Lemma 2.8 (a)) and therefore
dS,T ě 0. We proceed by induction on dS,T . If dS,T “ 0 then the dimension of the strata of M
is 0. Then V “M, which gives depthV “ 0. We conclude that the refinement is simple.

Now, in the inductive step, we can suppose that dS,T ą 0. It suffices to construct a chain of
refinements pX,Sq ĺ pX,Rq ĺ pX, T q, where the first one is simple and dR,T ă dS,T .

Let M,N PM be two strata with M
I
XN

I
‰ H. This implies M

I

XN
I

‰ H and therefore

M
I

“ N
I

. So, M
I
“ \tQ P O \M | Q Ă M

I

u “ \tQ P O \M | Q Ă N
I

u “ N
I
. We

get the dichotomy M
I
“ N

I
or M

I
X N

I
“ H. In order to avoid repetitions, we fix a family

tMi ĂM | i P ∇u such that YtM
I
|M PMu “ \tM

i,I
| i P ∇u, We define

R “ SzpO \Mq \ tM
i,I
| i P ∇u. (14)

Let us verify all the properties.

‚ pX,Rq is a stratified space. By definition of stable strata we have \tQ | Q P O\Mu “

\tM
i,I
| i P ∇u. Then R is a partition of X. Condition (S1)S gives condition (S1)R. Condition

(S2)R comes from (S2)S and Lemma 2.9 (a). For the proof of (S3)R and (S4)R, it suffices to
prove:

(a) S X P ‰ H ñ S Ă P and dimS ă dimP .
(b) S XM

I
‰ H ñ S ĂM

I
and dimS ă dimM

I
,

(c) S XM
I
‰ H ñ S ĄM

I
and dimM

I
ă dimS,

(d) N
I
XM

I
‰ H ñ M

I
“ N

I
.

where S, P P SzpO \Mq and M,N PM. Let us see that.
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(a) It follows directly from (S3)S and (S4)S .

(b) Locally finiteness of S (cf. (S3)S) gives M
I
“ YtQ | Q P S and Q ĂM

I
u. So, there exists

Q P O \M with Q
I

“M
I

and S XQ ‰ H. So, S Ă Q ĂM
I

(cf. (S3)S). Since S R O \M we

get S ‰ Q and then dimS
pS4qS
ă dimQ

(11)
ď dimQ

I

“ dimM
I Lemma 2.9paq

“ dimM
I
.

(c) Condition SXM
I
‰ H implies the existence of Q PM\O with Q

I

“M
I

and Q ĺ S (cf.
(S3)S). By definition of stable strata we can suppose that Q P M, which implies S P A since

S RM. If M
I

“ S
I

then S P O, which is impossible. So, M
I

‰ S
I

. Since M
I

“ Q
I (12)

ĺ S
I

then

M
I

ă S
I

and we get dimM
I pS4qT

ă dimS
I

.

Let us consider a virtual stratum V P V included in S
I

. There exists a maximal stratum
W P V with V ĺ W (cf. Lemma 2.2). Since V

I

ĺ W
I

(cf. (12)) then we have

dimM
I

ă dimS
I

“ dimV
I pS4qS
ď dimW

I

,

which is impossible by definition of M. So, the subset S
I

does not contain any virtual stratum.

By connectedness of S
I

the formula (13) implies that S
I

contains just one stratum of S, that

is, S
I

“ S. We get M
I
Ă M

I

“ Q
I

Ă SI “ S and dimM
I
“ dimM

I

“ dimQ
I pS4qS
ď dimS

I

“

dimS (cf. Lemma 2.9 (a)).

(d) If N
I
XM

I
‰ H then N I

XM
I

‰ H and therefore M
I

ĺ N
I

(cf. (S3)T ). Lemma 2.9

(a), (S4)T and (12) give dimM
I
“ dimM

I

ď dimN
I

“ dimN
I
. By definition of M we get that

previous ď becomes “. Finally, condition (S4)T gives M
I

“ N
I

and therefore M
I
“ N

I
.

‚ pX,Sq Ÿ pX,Rq is a simple refinement. The strata of SzpM \Oq remain equal. The
other strata verify condition (S6)S,R following Lemma 2.9. So, pX,Sq Ÿ pX,Rq is a refinement.
The only strata whose dimension increases when passing from S to R are the strata of M:
dimM ă dimM

I
. So

VS,R “MS,R “M “MS,T (15)

which gives depthVS,R “ depthMS,T “ 0.

‚ pX,Rq Ÿ pX,T q is a refinement with dR,T ă dS,T . A stratum Q P SzpO \Mq

goes to Q
I

, where it is an embedded sub-manifold from (S6)S,R. The strata M
I
, M P M, are

open subsets of M
I

. So, pX,Rq Ÿ pX, T q is a refinement. Since dimM
I
“ dimM

I

, for each
M PM, then M

I
P R is a source stratum. The same is true for the strata of AzO. This gives

VR,T “ VzM “ VS,T zMS,T and therefore dR,T ă dS,T . ♣

3. CS-sets

The invariance result we study in this work applies to CS-sets, a weaker notion
than that of stratified pseudomanifold. Here, a link of a stratum is not neces-
sarily a CS-set but a filtered space [8, example 2.3.6]. We also describe the local
structure of a simple refinement between two CS-sets.

3.1. CS-sets. A filtered space pX,Sq is a n-dimensional CS-set if any regular stratum is an
n-dimensional manifold, and for any singular stratum S P S and for any x P S there exists a
stratum preserving homeomorphism9

ϕ : pRi ˆ c̊L, I ˆ cLq Ñ pV,Sq,

9A homeomorphism which is also a stratified map. The involved stratifications are described in
Example 1.2 .
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where

(a) V Ă X is a open subset containing x,
(b) pL;Lq is a compact filtered space,
(c) ϕp0, vq “ x and ϕpRi ˆ tvuq “ V X S.

The pair pV, ϕq is a S-conical chart, or simply conical chart, of x. The link of ϕ is pL,Lq.
Since the links are always non-empty sets then the open subset XzΣ is dense. Closed strata of
S are exactly the minimal strata of S. On the other hand, the open strata of S are the maximal
strata of X, they coincide with the n-dimensional strata of X.

A perverse CS-set is a triple pX,S, pq where pX,Sq is a CS-set and p is a perversity on pX,Sq.
We find in [20] a comparison between different notions of stratification. In this work we need

the following property.

Proposition 3.1. Any CS-set is a stratified space.

Proof. Conditions (S2) and (S5) come from definition. Property (S1) is proved in [8, Lemma
2.3.8]. Let us verify (S3) and (S4). Since it is a local question, we set X “ Ri ˆ c̊L with
S “ Ri ˆ tvu. We can suppose S ‰ S1 and therefore S1 “ Ri ˆQˆs0, 1r for some Q P L. Since
S1 “ Ri ˆ cQ we get S Ă S1. We also have dimS ă dimS1. ♣

Consider a refinement pX,Sq Ÿ pX, T q between two CS-sets, which makes sense following
previous Proposition. The identity I : pX,Sq Ñ pX, T q is in fact a stratified map (cf. (11)). We
write pX,Sq ŸI pX, T q.

Simple decompositions and CS-sets are compatible.

Proposition 3.2. A refinement pX,SqŸpX, T q between two different CS-sets possesses a simple
decomposition made up of CS-sets.

Proof. It suffices to prove that the first element pX,Rq of the simple decomposition constructed
in the proof of Proposition 2.10 is a CS-set.

We use the following notation: pX,SqŸIpX,RqŸJpX, T q and pX,SqŸEpX, T q the original
refinement. We know that the manifolds XzΣS and XzΣT are dense open subsets of X. So,
dimpX,Sq “ dimpX, T q.

It remains to construct a R-conical chart of any point x P ΣS . We consider the strata S P S
and S

I

P R containing x. We distinguish two cases.

+ S P AS,R. Let ϕ : pRm ˆ c̊L, I ˆ c̊Lq Ñ pV,Sq be a S-conical chart of x with link pL,Lq.
Since dimS “ dimS

I

then S X V “ S
I

X V “ ϕpRm ˆ tvuq. A stratum of RV zSI is a union of

strata of SV zS , then it is of the form ϕpRmˆs0, 1rˆ‚q. So, there exists a filtration L1 on L such

that ϕ : pRmˆs0, 1rˆL, I ˆ I ˆL1q Ñ pV zS
I

,Rq is a stratified homeomorphism. This is also the
case for ϕ : pRm ˆ c̊L, I ˆ c̊L1q Ñ pV,Rq. We get that pϕ, V q is a R-conical neighborhood of x
with link pL,L1q.

+ S P VS,R. Notice first that VS,R “ MS,T (cf. (15)). By construction of R, the stratum
of R containing the point x is S

I
(cf. (14)). Let ϕ : pRm ˆ c̊L, I ˆ c̊Lq Ñ pV, T q be a T -conical

chart of x with link pL,Lq. It suffices to prove that pV, T q “ pV,Rq.
Since S

I
is an open subset of S

I

(cf. Lemma 2.9 (a)) we can suppose

S
I
X V “ S

I

X V “ ϕpRm ˆ tvuq. (16)

By definition of MS,T we have that the only virtual S-stratum on V is V X S. So, there are no

virtual pS, T q-strata on V zS
I

. We conclude from Lemma 2.8 (a) that pV zS
I

,Sq “ pV zSI , T q
and therefore pV zS

I

,Sq “ pV zSI ,Rq. Using (16) we get the claim pV, T q “ pV,Rq. ♣
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Remark 3.3. Notice that the coarsening of a CS-set is not necessarily a CS-set. Let us give an
example.

X0

X1 X1X1

X3X3

I

(X,S) (X, T )

On the CS-set pX,Sq the link of the strata
of X1 (resp. of the stratum X0) is S1 (resp.
T 2). This lack of uniformity implies that the
coarsening pX, T q is not a CS-set.

We construct a CS-set Y by adding a cone on each boundary of M . This CS-set has two
singular points: P1 and P2.

The following result describes the construction of compatible conical charts associated to a
simple refinement.

Proposition 3.4. Let pX,SqŸI pX, T q be a simple refinement between two CS-sets. We consider

a point x P ΣS and we write S P S and S
I

P T the strata containing x. We distinguish three
cases.

(a) S is a source stratum. Then there exists
- a S-conical chart pϕ, V q of x, whose link is pL,Lq, and

- a T -conical chart pϕ, V q of x, whose link is pL,L1q for some filtration L1 on L.

(b) S is an exceptional stratum. Let b “ dimS
I

´ dimS ě 1. Then there exists
- a S-conical chart pφ,W q of x, whose link is pSb´1, Iq.

(c) S is a virtual stratum and S
I

is a singular stratum. Let b “ dimS
I

´ dimS ě 1. Then
there exists

- a T -conical chart pψ,W q of x, whose link is pE; Eq, and

- a S-conical chart pφ,W q of x, whose link is pSb´1 ˚ E, E‹b´1q.

Proof. The case (a) has been studied in the proof of Proposition 3.2, since S P A.

We treat the cases (b) and (c), where dimS ă dimS
I

. We have S P V “ M, since the
decomposition is simple. Notice that depthM “ 0. Then we can suppose that M “ tSu, since
(b) and (c) are local questions. In other words, S “ tSu \A. This implies S “ T on XzS and

therefore on S
I

zS. The stratification S induces on S
I

the stratification

tS, pS
I

zSqccu with S ĺ pS
I

zSqcc (17)

(b) Since S is an embedded sub-manifold of S
I

(cf. (S6)) then there exists a homeomorphism

φ : RaˆRb “ Raˆ c̊Sb´1 ÑW , where W Ă S
I

is an open neighborhood of x and φpRaˆtvuq “
S XW , with a “ dimS. Do not forget that S

I

is a regular stratum of T , which implies that
W is an open subset of X. From (17), we conclude that φ : pRa ˆ c̊Sb´1, I ˆ c̊Iq Ñ pW, T q is a
stratified homeomorphism an therefore pφ,W q is a T -chart of x whose link is pSb´1, Iq.

(c) Without loss of generality we can suppose that: pW, T q “ pRa`b ˆ c̊E, I ˆ c̊Eq, ψ “ Id ,

S
I

“ Ra`b ˆ tvu and x “ p0, vq. Since S is an embedded sub-manifold of S
I

(cf. (S6)) then
we can suppose S “ Ra ˆ t0u ˆ tvu. From (17) we get that the stratification S induces the

stratification tRa ˆ t0u ˆ tvu,Ra ˆ pRbzt0uqcc ˆ tvuu on S
I

“ Ra`b ˆ tvu.
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Since all the strata of pS,W zSq are source strata then S “ T on W zS
I

“ Ra`b ˆ p̊cEztvuq
(cf. Lemma 2.8 (a)). This gives that ψ : pRa ˆ pRb ˆ c̊Eq, I ˆ pI ˆ c̊Eqp0,vqq Ñ pW,Sq is a

stratified homeomorphism. We consider the homeomorphism g : Rb Ñ Bb given by gpxq “
2 arctanp||x||q ¨ x{π. Finally, we define

φ “ ψ ˝ pId ˆ g´1 ˆ Id q ˝ pId ˆ hq : pRa ˆ c̊pSb´1 ˚ Eq, I ˆ c̊E‹b´1q Ñ pW,Sq,

which is a stratified homeomorphism (cf. Proposition 2.3). We get the S-conical chart pφ,W q of
x whose link is pSb´1 ˚ E, E‹b´1q. ♣

3.2. Charts and perversities. Consider a CS-set pX,Sq and a conical chart

ϕ : pRm ˆ c̊L, I ˆ c̊Lq Ñ pV,Sq

of a point x P S, where S P Ssing. A perversity p on pX,Sq induces a perversity on the LHS
which is described as follows. By restriction, p determines a perversity on pV,Sq still denoted by
p. We call again p the perversity induced on pRmˆ c̊L, Iˆ c̊Lq by the stratified homeomorphism
ϕ. A such perversity is determined by a perversity on the link pL,Lq, also denoted by p, and by
the number ppSq following these formulæ:

ppRm ˆQˆs0, 1r
loooooooomoooooooon

“ϕVXR

q “ ppQq “ ppRq, and ppRm ˆ tvuq “ ppvq “ ppSq, (18)

where v is the apex of c̊L.

We study the behavior of the perversities concerning the charts of Proposition 3.4. More
precisely, if I : pX,Sq Ñ pX, T q is the stratified map induced by the refinement pX,Sq Ÿ pX, T q
and p is a perversity on pX,Sq we study the relation between p and I‹p under the previous
conventions (18) following the three cases presented in Proposition 3.4.

(a) The map I : pV,Sq Ñ pV, T q becomes pRm ˆ c̊L, I ˆ Lq Ñ pRm ˆ c̊L, I ˆ L1q, given by

x ÞÑ x, which is a stratified map. Recall that ϕpV X Sq “ Rm ˆ tvu “ ϕpV X S
I

q (cf. (16)).
Previous conventions give the equalities

ppSq “ ppRm ˆ tvuq “ ppvq and I‹ppS
I

q “ I‹ppRm ˆ tvuq “ I‹ppvq (19)

(b) The map I : pW,Sq Ñ pW, T q becomes the stratified map pRaˆc̊Sb´1, Iˆc̊Iq Ñ pRa`b, Iq
given by px, rz, rsq ÞÑ px, g´1przqq where gpxq “ 2 arctanp||x||q

π||x|| ¨ x. The strata S, pS
I

zSqcc P S and

S
I

P T become respectively Raˆtuu,Raˆ
`

Sb´1
˘

cc
ˆs0, 1r and Ra`b, where u is the apex of the

cone c̊Sb´1. We have I‹p “ 0 and previous convention (18) gives the formula

ppSq “ ppRa ˆ tuuq “ ppuq (20)

(c) The map I : pW,Sq Ñ pW, T q becomes the stratified map

ψ´1 ˝ φ : pRa ˆ c̊pSb´1 ˚ Eq, I ˆ c̊E‹b´1q Ñ pRa ˆ Rb ˆ c̊E, I ˆ I ˆ c̊Eq

given by

px, rrz, ys, rsq ÞÑ

#

px, g´1p2rzq, ry, rsq si ||z|| ď 1{2

px, g´1prz{||z||q, ry, 2rp1´ ||z||qsq si ||z|| ě 1{2.

The strata S, pS
I

zSqcc P S and S
I

P T become respectively Ra ˆ tuu,Ra ˆ
`

Sb´1
˘

cc
ˆs0, 1r and

Ra ˆ Rb ˆ tvu, where u is the apex of the cone c̊pSb´1 ˚ Eq and v is the apex of the cone c̊E.
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The other strata oh the LHS are source strata. Previous convention (18) gives the formulæ

ppRq “ ppRa ˆDb ˆQˆs0, 1r
looooooooooomooooooooooon

“φVXR

q “ ppQq

I‹ppR
I

q “ I‹ppRa ˆ Rb ˆQˆs0, 1r
looooooooooomooooooooooon

“ψVXR
I

q “ I‹ppQq,

pppS
I

zSqccq “ ppRa ˆ
`

Sb´1
˘

cc
ˆs0, 1rq “ pp

`

Sb´1
˘

cc
q

ppSq “ ppRa ˆ tuuq “ ppuq

I‹ppS
I

q “ I‹ppRa ˆ Rb ˆ tvuq “ I‹ppvq,

(21)

where R P R with R
I

‰ S
I

.

3.3. Comparison tools. The invariance results we prove in two final sections follow the same
pattern: a stratified map induces an isomorphism in (co)homology. To achieve this objective we
use these two results. The first one is used with compact supports (cf. [6, Theorem 5.1]) and
the second one is used with closed supports (cf. [3, Proposition 13.2]).

Proposition 3.5. Let FX be the category whose objects are (stratified homeomorphic to) open
subsets of a given CS set pX,Sq and whose morphisms are stratified homeomorphisms and inclu-
sions. Let Ab˚ be the category of graded abelian groups. Let F˚, G˚ : FX Ñ Ab be two functors
and Φ: F˚ Ñ G˚ a natural transformation satisfying the conditions listed below.

(a) F˚ and G˚ admit exact Mayer-Vietoris sequences and the natural transformation Φ induces
a commutative diagram between these sequences,

(b) If tUαu is a increasing collection of open subsets of X and Φ: F˚pUαq Ñ G˚pUαq is an
isomorphism for each α, then Φ: F˚pYαUαq Ñ G˚pYαUαq is an isomorphism.

(c) Consider pϕ, V q a conical chart of a singular point x P S with S P S. If Φ: F˚pV zSq Ñ
G˚pV zSq is an isomorphism, then so is Φ: F˚pV q Ñ G˚pV q.

(d) If U is an open subset of X contained within a single stratum and homeomorphic to an
Euclidean space, then Φ: F˚pUq Ñ G˚pUq is an isomorphism.

Then Φ: F˚pXq Ñ G˚pXq is an isomorphism.

Proposition 3.6. Let FX be the category whose objects are (stratified homeomorphic to) open
subsets of a given paracompact second countable10 CS-set X and whose morphisms are strat-
ified homeomorphisms and inclusions. Let Ab˚ be the category of graded abelian groups. Let
F˚, G˚ : FX Ñ Ab be two functors and Φ: F˚ Ñ G˚ a natural transformation satisfying the
conditions listed below.

(a) F˚ and G˚ admit exact Mayer-Vietoris sequences and the natural transformation Φ induces
a commutative diagram between these sequences,

(b) If tUαu is a disjoint collection of open subsets of X and Φ: F˚pUαq Ñ G˚pUαq is an isomor-
phism for each α, then Φ: F˚p

Ů

α Uαq Ñ G˚p
Ů

α Uαq is an isomorphism.
(c) Consider pϕ, V q a conical chart of a singular point x P S with S P S. If Φ: F˚pV zSq Ñ

G˚pV, zSq is an isomorphism, then so is Φ: F˚pV q Ñ G˚pV q.
(d) If U is an open subset of X contained within a single stratum and homeomorphic to an

Euclidean space, then Φ: F˚pUq Ñ G˚pUq is an isomorphism.

Then Φ: F˚pXq Ñ G˚pXq is an isomorphism.

10In the original reference [3, Proposition 13.2] the pseudomanifold X needs to be separable. A second
countable space is separable (see for example [25, Theorem 16.9]) so we can change this last hypothesis
in the statement of the Proposition.
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Remark 3.7. A priori, in order to apply Proposition 3.5 and Proposition 3.6 one needs to verify
condition (c) for any conical chart of X. Reading carefully the proof of these Propositions one
notices that it is enough to verify (c) for a neighborhood basis of each point x of X.

Associated to a conical chart ϕ : Riˆ c̊LÑ V of the point x, we can construct a neighborhood
basis Bx “

 

ϕε : s ´ ε, εri ˚̂cεL Ñ Vε | ε ą 0
(

of x, where c̊ε “ L ˆ r0, εr{L ˆ t0u and Vε “

ϕps´ε, εri ˚̂cεLq. Notice that all this open subsets are stratified homeomorphic after homotethy.
So, in order to apply Proposition 3.5 and Proposition 3.6 it suffices to verify conditions (c)

for a conical chart of each point of X.
Notice that the family Fx “

 

ϕε : r´ε, εs ˆ cεL Ñ Vε | ε ą 0
(

is a 1neighborhood basis for
the point x made up of closed subsets. In other words, the space X is locally compact.

3.4. Morphisms. Consider a stratified map f : pX,S, pq Ñ pY, T , qq between two perverse CS-
sets. If the perversities verify f˚Dq ď Dp then we have the following induced morphisms.

(a) f˚ : H
p

˚
pX;Sq Ñ H

q

˚
pY ; T q and f˚ : H

˚

p
pX;Sq Ñ H

˚

q
pY ; T q (cf. [6, Proposition 3.11]).

(b) f˚ : H
˚

p,c
pX;Sq Ñ H

˚

q,c
pY ; T q if the map f is a proper map. This comes from 1.5.d and

from the fact that the family tf´1pKq | K Ă Y compactu is cofinal in the family of compact
subsets of X if f is proper.

(c) f˚ : H
p

˚
pX;Sq Ñ H

q

˚
pY ; T q, if fpX

pq Ă ΣpY,T q where Xp “ \tS | S P Ssing and ppSq ą tpSqu

(cf. [6, Proposition 3.11]). An adapted version of this result is needed in this work (see
Lemma 4.5).

(d) f˚ : H
BM,p

˚
pX;Sq Ñ H

BM,q

˚
pX, T q and f˚ : H

BM,p

˚
pX;Sq Ñ H

BM,q

˚
pX, T q (cf. 1.5.d).

If the perversities verify f˚q ď p then we have the following induced morphisms:

(e) f˚ : H
˚

q
pY ; T q ÑH

˚

p
pX;Sq if f‹q ď p (cf. [3, Theorem A]).

(f) f˚ : H
˚

q,c
pY ; T q ÑH

˚

p,c
pX;Sq if the map f is a proper map.This comes from 1.9.d and from

the fact that the family tf´1pKq | K Ă Y compactu is cofinal in the family of compact
subsets of X if f is proper.

4. Refinement invariance for CS-sets

We prove the main result of this work: the refinement invariance of all the
homologies and cohomologies of Section 1 : Theorem A for coarsenings and
Theorem B for refinements. In the first case, we need to work with a particular
type of perversities, the K-perversities.

4.1. K-perversities. These are the perversities for which refinement invariance holds. Roughly
speaking, they are M -perversities defined on the LHS of a refinement pX,Sq Ÿ pX, T q whose
restriction to the strata of the RHS is a classical perversity verifying the growing condition of a
Goresky-MacPherson perversity.

Definition 4.1. Let pX,SqŸpX, T q be a refinement. A perversity p on pX,Sq is a K-perversity
if it verifies conditions (K1) and (K2).

(K1) We have, for any strata S,Q P S with S ĺ Q and S
I

“ Q
I

,

ppQq ď ppSq ď ppQq ` tpSq ´ tpQq, (22)

(K2) We have, for any strata S,Q P S with dimS “ dimQ and S
I

“ Q
I

,

ppQq “ ppSq, (23)
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Remark 4.2. Notice these two conditions are equivalent to conditions

DppQq ď DppSq ď DppQq ` tpSq ´ tpQq and DppQq “ DppSq. (24)

Also, condition (22) is always verified when both strata S and Q are regular strata. If the stratum
Q is regular and the stratum S is singular (id est, S is an exceptional stratum), then condition
(22) becomes

0 ď ppSq ď tpSq. (25)

In particular, the existence of a K-perversity implies the non-existence of 1-exceptional strata
since 0 ď tpSq “ ´1 is not possible.

Before proving the main results of this work, we need some technical Lemmas.

Lemma 4.3. Let pX,Sq ŸI pX, T q be a refinement. Any K-perversity p verifies I‹ppT q “ ppSq
for each T P T where S P S is a source stratum of T .

Proof. We know from Section 1.3 that I‹ppT q “ mintppQq | Q P S and Q
I

“ T u. For any Q P S
with Q

I

“ T there exists a source stratum S P S with Q ĺ S and S
I

“ T (cf. Lemma 2.8 (b)).
So, I‹ppT q “pK1q mintppSq | S P S source stratum of T u. Condition (23) ends the proof. ♣

Lemma 4.4. Let pX,SqŸpX, T q be a refinement. For any K-perversity p we have I‹DI‹p ď Dp.

Proof. Given a stratum S P S, there exists a source stratum Q P S of S
I

verifying S ĺ Q (cf.
Lemma 2.8 (b)). We have

I‹DI‹ppSq “ DI‹ppS
I

q “ tpS
I

q ´ I‹ppS
I

q
source
“ tpQ

I

q ´ ppQq ďp1q tpQq ´ ppQq

“ DppQq
pK1q
ď DppSq,

where p1q comes from (11) except when Q is an exceptional stratum. In this case codimQ ě 2

and therefore tpQ
I

q “ 0 ď tpQq (cf. Remark 4.2). ♣

Lemma 4.5. Let pX,Sq ŸI pX, T q be a refinement. between two CS-sets. For any K-perversity

p we have the induced morphisms I‹ : H
p

˚
pX;Sq Ñ H

I‹p

˚
pX; T q, I‹ : H

˚

I‹p
pX; T q Ñ H

˚

p
pX;Sq,

I‹ : H
˚

I‹p,c
pX; T q Ñ H

˚

p,c
pX;Sq.

Proof. If we prove that the operator I‹ : C
p

˚
pX;Sq Ñ C

I‹p

˚
pX; T q is well defined then, by duality,

the operator I‹ : C
˚

I‹p
pX; T q Ñ C

˚

p
pX;Sq is also well defined. Following [6, Proposition 3.11] and

Lemma 4.4 it suffices to prove IpXpq Ă ΣpX,T q. If this is not true, then there exist Q P S and

S P Ssing with Q ĺ S, ppSq ą tpSq and Q
I

P T reg. Since Q
I

ĺ(12) S
I

then S
I

P Sreg. Then S
is an exceptional stratum. This is impossible (cf. (25)). Last point comes from 1.5.d. ♣

Lemma 4.6. Let pX,Sq ŸI pX,Rq ŸJ pX, T q be two refinements. If p is a K-perversity on
pX,Sq, relatively to the refinement E “ J ˝ I, then

(a) p is a K-perversity, relatively to the refinement I, and
(b) I‹p is a K-perversity, relatively to the refinement J .

Proof. Property (a) comes directly from the fact that S
I

“ S
J

implies S
E

“ S
I
J

“ Q
I
J

“ Q
E

,
if S,Q P S. Let us prove (b) in two steps.

(K1)I‹p Consider S,Q P R with S ĺ Q and S
J

“ Q
J

. Lemma 2.8 (c) gives two I-source strata
S1, Q1 P S, of S and Q respectively, with S1 ĺ Q1. We have I‹ppSq “ ppS1q and I‹ppQq “ ppQ1q
(cf. Lemma 4.3) and

S1
E

“ S1
I
J

“ S
J

“ Q
J

“ Q1
I
J

“ Q1
E

(26)
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then

I‹ppQq “ ppQ1q
pK1qp
ď ppS1q “ I‹ppSq

pK1qp
ď ppQ1q ` tpS1q ´ tpQ1q

source strata
“ I‹ppQq ` tpS

1
I

q ´ tpQ1
I

q “ I‹ppQq ` tpSq ´ tpQq.

(K2)I‹p Consider two strata S,Q P R with dimS “ dimQ and S
J

“ Q
J

. Lemma 2.8 (b)
gives two source strata S1, Q1 P S of S and Q respectively, relatively to the refinement I. Then

S1
E

“ Q1
E

(cf. (26)) and dimS1 “ dimS1
I

“ dimS “ dimQ “ dimQ1
I

“ dimQ1. Applying
(K2)p we get ppS1q “ ppQ1q. On the other hand, Lemma 4.3 gives I‹ppSq “ ppS1q, I‹ppQq “ ppQ1q
and therefore we get the claim I‹ppSq “ I‹ppQq. ♣

4.2. Main results. We give the two invariance results of the various intersection (co)homologies:
by coarsening and by refinement.

Theorem A (Invariance by coarsening). Let pX,Sq Ÿ pX, T q be a refinement between two
CS-sets. For any K-perversity p on pX,Sq the identity I : X Ñ X induces the isomorphisms

(R1) H
p

˚
pX;Sq – H

I‹p

˚
pX; T q, ............ (R2) H

˚

p
pX;Sq – H

˚

I‹p
pX; T q,

(R3) H
˚

p,c
pX;Sq – H

˚

I‹p,c
pX; T q, ............ (R4) H

p

˚
pX;Sq – H

I‹p

˚
pX; T q,

(R5) H
˚

p
pX;Sq – H

˚

I‹p
pX; T q, ............ (R6) H

˚

p,c
pX;Sq – H

˚

I‹p,c
pX; T q,

If in addition, X is second countable then

(R7) H
BM,p

˚
pX;Sq – H

BM,I‹p

˚
pX; T q, ...... (R8) H

BM,p

˚
pX;Sq – H

BM,I‹p

˚
pX; T q,

(R9) H
˚

I‹p
pX; T q –H

˚

p
pX;Sq, ...... (R10) H

˚

p,c
pX;Sq – H˚

I‹p,c
pX; T q

Proof. Notice first that the identity I induces the morphisms (R1), . . . , (R10). This comes from
Lemma 4.4, 1.3, Paragraph 3.4 and Lemma 4.5. We proceed in several steps.

(R2) and (R5). Apply the Universal coefficient Theorem of 1.5.e to (R1) and (R4).

(R3) and (R6). Considering (4) it suffices to prove that I induces the isomorphismsH
˚

p
pX,XzK;Sq –

H
˚

I‹p
pX,XzK; T q and H

˚

p
pX,XzK;Sq – H

I‹p

˚
pX,XzK; T q, for each compact subset K Ă X.

Properties (R2), (R5) and the long exact sequences of 1.5.d give the result.

(R7) and (R8). Since X second countable then it is hemicompact (see [23, Remark 1.3]).

Considering (5) it suffices to prove H
p

˚
pX,XzKSq – H

I‹p

˚
pX,XzK; T q and H

p

˚
pX,XzK;Sq –

H
I‹p

˚
pX,XzK; T q, where K is a compact subset of X. Properties (R1), (R4) and the long exact

sequences of 1.5.d give the result.

(R10). Since X second countable then it is hemicompact, paracompact and therefore normal
(see [23, Remark 1.3], [25, Theorem 20.10]). Considering Proposition 1.1 it suffices to prove

H
˚

p
pX,XzK;Sq – H

˚

I‹p
pX,XzK; T q, where K Ă X is compact. Property (R9) and the long

exact sequence of 1.9.d give the result.

(R1), (R4) and (R9). Without loss of generality we can suppose that the refinement is simple
(cf. Proposition 3.2 and Lemma 4.6). We verify the conditions of Proposition 3.5, for (R1) and
(R4), and Proposition 3.6, for (R9). Th functor Φ comes from I : X Ñ X.

(a) It suffices to consider the Mayer-Vietoris sequences of 1.5.a, 1.7.a and 1.9.a11.

11Notice that X is second countable, Hausdorff and locally compact (Remark 3.7). Then, the pseu-
domanifold X is paracompact (cf. [1, II.12.12]).
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(b) The chains have compact support, so we get (R1) and (R4). The case (R9) is immediate.

(d) Since SU “ I implies TU “ I then property (D) becomes a tautology.

(c) Consider a singular point x P X. Following Remark 3.7 we distinguish three cases.

(C-a) x P S, source stratum of S. Considering Proposition 3.4 (a) and using the local
calculations 1.5.b and 1.9.b, we need to prove

pR1q H
p

˚
pL,Lq–HI‹p

˚
pL,L1q ùñ H

p

˚
p̊cL, c̊Lq–HI‹p

˚
p̊cL, c̊L1q

pR4q H
p

˚
pL,Lq–HI‹p

˚
pL,L1q ùñ H

p

˚
p̊cL, c̊Lq–HI‹p

˚
p̊cL, c̊L1q

pR9q H
p

˚
pL,Lq–H

I‹p

˚
pL,L1q ùñ H

p

˚
p̊cL, c̊Lq–H

I‹p

˚
p̊cL, c̊L1q.

Since the perversity p verifies ppSq “ I‹ppS
I

q (cf. Lemma 4.3) then we have ppvq “ I‹ppvq (cf.
(19)). The result comes now directly from the local calculations 1.5.b and 1.9.b.

(C-b) x P S, exceptional stratum of S. Considering Proposition 3.4 (b) and using the
local calculations 1.5.b and 1.9.b, we need to prove

pR1q H
p

˚

`

c̊Sb´1, c̊I
˘

–G, pR4q H
p

˚

`

c̊Sb´1, c̊I
˘

–G, pR9q H
˚

p

`

c̊Sb´1, c̊I
˘

–R.

where b “ codimS ě 1. Since 0 ď ppSq ď tpSq “ b´ 2 (cf. (25)) then we have 0 ď ppuq ď b´ 2
(cf. (20)). The result comes now directly from the local calculations 1.5.b and 1.9.b.

(C-c) x P S, virtual stratum, with S
I

singular stratum of S. Considering Proposi-
tion 3.4 (c) and using the local calculations 1.5.b and 1.9.b, we need to prove

pR1q H
p

˚

`

c̊pSb´1 ˚ Eq, c̊E‹b´1

˘

– H
I‹p

˚
p̊cE, c̊Eq

pR4q H
p

˚

`

c̊pSb´1 ˚ Eq, c̊E‹b´1

˘

– H
I‹p

˚
p̊cE, c̊Eq

pR9q H
˚

p

`

c̊pSb´1 ˚ Eq, c̊E‹b´1

˘

– H
˚

I‹p
p̊cE, c̊Eq,

where b “ dimS
I

´ dimS ě 1.
Since S ĺ pS

I

zSqcc (cf. (17)) and pppS
I

zSqccq ď ppSq ď pppS
I

zSqccq ` b (cf. (22)) then we
have pppSb´1qccq ď ppuq ď pppSb´1qccq ` b (cf. (21)). Similarly, we get DpppSb´1qccq ď Dppuq ď
DpppSb´1qccq ` b (cf. (24)).

Since ppSq “ I‹ppS
I

q (cf. Lemma 4.3) then we have ppvq “ I‹ppvq (cf. (21)).
Applying the local calculations 1.5.b,c and 1.9.b,c the question becomes

pR1q H
p

˚
pE, Eq–HI‹p

˚
pE, Eq, pR4q H

p

˚
pE, Eq–HI‹p

˚
pE, Eq pR9q H

˚

p
pE, Eq–H

˚

I‹p
pE, Eq,

The stratum S belongs to V “ M (cf. (15)). Since any other R P S meeting the conical chart
W verifies S ă R then R is a source stratum and then ppRq “ I‹ppRq (cf. Lemma 4.3). From
(21) we get p “ I‹p on E. The claim is proved. ♣

Remark 4.7. The existence of 1-exceptional strata may impeach the above isomorphisms. This

is the case for (R4), . . . (R10). For example H
0

˚

`

c̊S0, c̊I
˘

“ 0 ‰ G “ H
0

˚
ps ´ 1, 1r, Iq. But we have

H
0

˚

`

c̊S0
˘

“ G “ H
0

˚
ps ´ 1, 1r, I, c̊Iq. In fact, the local calculations H

p

0

`

c̊S0,S
˘

and H
p

0

`

c̊S0;S
˘

are different:

H
p

0

`

c̊S0, c̊I
˘

“

"

H
0
pS0q if Dppvq ě 0
G if Dppvq ă 0

H
p

0

`

c̊S0, c̊I
˘

“

"

H
0
pS0q if Dppvq ě 0
0 if Dppvq ă 0.

We observe that condition H
p

˚

`

c̊S0, c̊I
˘

–G of (C-c) is never fulfilled, while we just need

Dppvq ă 0 to have H
p

˚

`

c̊S0, c̊I
˘

–G of (C-c).
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Condition (22) can be weakened in cases (R1), (R2) and (R3) as follows: dealing with 1-
exceptional strata S, it suffices to ask DppSq ă 0, that is, ppSq ě 0 and not 0 ď ppSq ď tpSq.
So, these strata are allowed for (R1), (R2) and (R3).

Theorem B (Invariance by refinement). Let pX,Sq Ÿ pX, T q be a refinement between two
CS-sets. We suppose that there are no 1-exceptional strata. For any perversity q on pX, T q the
identity I : X Ñ X induces the isomorphisms

(R1) H
I‹q

˚
pX;Sq – H

q

˚
pX; T q, (R2) H

˚

I‹q
pX;Sq – H

˚

q
pX; T q,

(R3) H
˚

I‹q,c
pX;Sq – H

˚

q,c
pX; T q, (R4) H

I‹q

˚
pX;Sq – H

q

˚
pX; T q,

(R5) H
˚

I‹q
pX;Sq – H

˚

q
pX; T q, (R6) H

˚

I‹q,c
pX;Sq – H

˚

q,c
pX; T q.

If in addition, X is second countable then

(R7) H
BM,I‹q

˚
pX;Sq – H

BM,q

˚
pX; T q, (R8) H

BM,I‹q

˚
pX;Sq – H

BM,q

˚
pX; T q,

(R9) H
˚

I‹q
pX; T q –H

˚

q
pX;Sq, (R10) H

˚

I‹q,c
pX;Sq – H˚

q,c
pX; T q

Proof. It suffices to apply apply Theorem A to the perversity I‹p (cf. Paragraph 1.3), if this
perversity is a K-perversity. This is the case when 1-codimensional exceptional strata do not
appear. Let us verify properties (K1) and (K2).

(K1) We have I‹qpQq “ qpQ
I

q “ qpS
I

q “ I‹qpSq ď I‹qpQq ` tpSq ´ tpQq, if we prove
tpQq ď tpSq. This is clear if S and Q are regular strata or singular strata at the same time
(cf. (S4)). It remains the case where S is an exceptional stratum and Q is a regular stratum.
The inequality becomes tpSq ě 0, that is, codimS ě 2. This comes from the non-existence of
1-exceptional strata.

(K2) We have I‹qpQq “ qpQ
I

q “ qpS
I

q “ I‹qpSq. ♣

In cases (R1), (R2) and (R3), 1-exceptional strata S may appear if ppSq ě 0 (cf. Remark 4.7).

4.3. Topological invariance. One of the two more important properties of the intersection
homology is the topological invariance [15]. Next Corollaries show that the refinement invariance
implies topological invariance in some cases. We find the well known topological invariance of the
intersection homology [15] (see also [19, 13]) and those of tame intersection homology [9] (closed
supports) and [11] (compact supports). We also get the topological invariance of the blown-
up intersection cohomology [3, Theorem G] (closed supports) and [5, Theorem A] (compact
supports).

Before giving the result, there are two important tools to highlight.

‚ Intrinsic stratification (cf. [18, 19]). Any stratified space pX,Sq has a smallest refine-
ment: the intrinsic stratified space pX,S˚q. It is a canonical object: we have S˚ “ T ˚ for any
stratification T defined on X. If pX,Sq is a CS-set then pX,S˚q is also a CS-set.

‚ Classical perversities versus M-perversities. The former depend on the codimension of the
strata while the latter are defined on the strata themselves.

A King perversity is a map p : N Ñ Z verifying pp0q “ 0 and ppkq ď ppk ` 1q ď ppkq ` 1 for
each k P N˚ (cf. [19]). It verifies

ppkq ď pp`q ď ppkq ` `´ k, (27)

if 1 ď k ď `. A King perversity p induces a perversity, still denoted by p: ppSq “ ppcodimSq.
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A Goresky-MacPherson perversity is a King perversity p with pp0q “ pp1q “ pp2q “ 0 (cf.
[15]). It verifies, for each k ě 2,

0 ď ppkq ď k ´ 2 “ tpkq (28)

Corollary 4.8. Let pX,Sq be a CS-set endowed with a positive King perversity p. Consider the
intrinsic refinement pX,Sq ŸI pX,S˚q. The identity map I : X Ñ X induces the isomorphisms

H
p

˚
pX;Sq – H

p

˚
pX;S˚q H

˚

p
pX;Sq – H

˚

p
pX;S˚q H

˚

p,c
pX;Sq – H

˚

p,c
pX;S˚q,

if pp`q ě 0 when ` is the codimension of an exceptional stratum. We also have

H
p

˚
pX;Sq – H

p

˚
pX;S˚q H

˚

p
pX;Sq – H

˚

p
pX;S˚q H

˚

p,c
pX;Sq – H

˚

p,c
pX;S˚q,

if 0 ď pp`q ď tp`q. If in addition, X is second countable the we have

H
˚

p
pX;Sq –H

˚

p
pX;S˚q H

˚

p,c
pX;Sq –H

˚

p,c
pX;S˚q H

BM,p

˚
pX;Sq – H

BM,p

˚
pX;S˚q

Proof. Let us verify that p is a K-perversity.
(K1) By definition of the perversity p, we need to prove

ppcodimQq ď ppcodimSq ď ppcodimQq ` tpcodimSq ´ tpcodimQq.

This is clear if S,Q are regular strata or singular strata (cf. (S4) and (27)). It remains the
case where S is an exceptional stratum and Q is a regular stratum. The inequality becomes
0 ď ppcodimSq ď tpcodimSq which is true from hypothesis and Remark 4.7.

(K2) We have ppSq “ ppcodimSq “ ppcodimQq “ ppQq.

The classical perversity p induces the perversity p on pX,Sq by formula ppSq “ ppcodimSq.

In fact, the perversity I‹p of pX, T q also comes from the classical perversity p: I‹ppT q
Lemma 4.3

“

ppSq “ ppcodimSq
source
“ ppcodimT q “ ppT q, where T P T and S P S is source stratum of T .

Now, it suffices to apply Theorem A. ♣

Remark 4.9. (1) - Let pX,Sq be a CS-set endowed with a Goresky-MacPherson perversity p.

Since p ě 0 (cf. (28)), then the previous Corollary implies that the cohomologies H
p

˚
pX;Sq,

H
˚

p
pX;Sq and H

˚

p,c
pX;Sq are independent of the stratification S. We do not have a similar

result for tame intersection homologies since condition 0 ď p ď t (cf. (28)) implies that tame
intersection homology coincides with the usual intersection homology.

Let us suppose that X is second countable. When 1-exceptional strata do not exist then we

can apply the above Corollary and conclude that the cohomologies H
˚

p
pX;Sq, H

˚

p,c
pX;Sq and

H
BM,p

˚
pX;Sq are independent of the stratification S. (cf. (28)).

(2) - Consider p a K-perversity. Condition (K2) means that the restriction of p to the S-
stratification lying on each stratum T P T is in fact a classical perversity (excepted the condition
pp0q “ 0). On the other hand, property (K1) is in fact a growing condition of the type (27), even
weaker. Although it is not completely exact, we can think a K-perversity as a perversity whose
restriction to any stratum T P T is a King perversity.
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