An extremal composition operator on the Hardy space of the bidisk with small approximation numbers - Université d'Artois Access content directly
Preprints, Working Papers, ... Year :

An extremal composition operator on the Hardy space of the bidisk with small approximation numbers

Abstract

We construct an analytic self-map $\Phi$ of the bidisk ${\mathbb D}^2$ whose image touches the distinguished boundary, but whose approximation numbers of the associated composition operator on $H^2 ({\mathbb D}^2)$ are small in the sense that $\limsup_{n \to \infty} [a_{n^2} (C_\Phi)]^{1 / n} < 1$.
Fichier principal
Vignette du fichier
Distinguished boundary.pdf (185.75 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01987504 , version 1 (21-01-2019)

Identifiers

Cite

Daniel Li, Hervé Queffélec, Luis Rodríguez-Piazza. An extremal composition operator on the Hardy space of the bidisk with small approximation numbers. 2019. ⟨hal-01987504⟩
98 View
71 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More