
HAL Id: hal-01558467
https://hal.science/hal-01558467

Submitted on 7 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Disjunctive closures for knowledge compilation
Hélène Fargier, Pierre Marquis

To cite this version:
Hélène Fargier, Pierre Marquis. Disjunctive closures for knowledge compilation. Artificial Intelligence,
2014, 216, pp.129-162. �10.1016/j.artint.2014.07.004�. �hal-01558467�

https://hal.science/hal-01558467
https://hal.archives-ouvertes.fr


  

 

To link to this article : DOI : 10.1016/j.artint.2014.07.004 
URL : https://doi.org/10.1016/j.artint.2014.07.004 

To cite this version : Fargier, Hélène and Marquis, Pierre Disjunctive 
closures for knowledge compilation. (2014) Artificial Intelligence, vol. 
216 (Nov. 2014). pp. 129-162. ISSN 0004-3702 

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 16897 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 
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The knowledge compilation (KC) map [1] can be viewed as a multi-criteria evaluation of 
a number of target classes of representations for propositional KC. Using this map, the 
choice of a class for a given application can be made, considering both the space efficiency 
of it (i.e., its ability to represent information using little space), and its time efficiency, 
i.e., the queries and transformations which can be achieved in polynomial time, among 
those of interest for the application under consideration. When no class of propositional 
representations offers all the transformations one would expect, some of them can be left 
implicit. This is the key idea underlying the concept of closure introduced here: instead of 
performing computationally expensive transformations, one just remembers that they have 
to be done. In this paper, we investigate the disjunctive closure principles, i.e., disjunction, 
existential quantification, and their combinations. We provide several characterization 
results concerning the corresponding closures. We also extend the KC map with new 
propositional languages obtained as disjunctive closures of several incomplete propositional 
languages, including the well-known KROM (the CNF formulae containing only binary 
clauses), HORN (the CNF formulae containing only Horn clauses), and AFF (the affine 
language, which is the set of conjunctions of XOR-clauses). Each introduced language is 
evaluated along the lines of the KC map.

1. Introduction

Knowledge compilation (KC) consists of a family of approaches which aim at improving the efficiency of some compu-

tational tasks – typically, saving on-line computation time – via pre-processing. The pre-processing step consists in turning 
some pieces of available information into a compiled form, during an off-line compilation phase.

KC gathers a number of research lines focusing on different problems, [5–12], ranging from theoretical ones, where the 
key question is the compilability issue, i.e., determining whether pre-processing can lower the computational complexity 
of some tasks, to more practical ones, especially the design of compilation algorithms for some specific tasks like clausal 
entailment. An important research line [13,1] is concerned with the issue of choosing a target class of representations for 
KC. In [1], the authors argue that the choice of a target class for a compilation purpose must be based both on its time 
efficiency, defined as the set of queries and transformations which can be achieved in polynomial time when the pieces of 
data to be exploited are represented in the class, as well as the space efficiency of the class, i.e., its ability to represent 
data using little space. Thus, the KC map [1] is an evaluation of a dozen of significant propositional classes L, also called 
propositional fragments, w.r.t. several dimensions: the space efficiency (aka succinctness) of the fragment and its time 

✩ This paper is an extended and revised version of [2,3]. It also elaborates on some of the results presented in [4].
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efficiency (aka tractability), i.e., the class of queries and transformations it supports (or not) in polynomial time, often under 
standard assumptions from complexity theory. The KC map is intended to serve as a guide for selecting the “right” target 
class given the requirements imposed by the application under consideration.

The KC map reported in [1] has already been extended to other propositional classes, queries and transformations in a 
number of subsequent papers, including [14–18,2,4,19–21,3,22]. In all those papers, queries and transformations are also 
viewed as properties of classes of propositional representations L. One says that L offers or satisfies a given query or a 
transformation when there exists a polynomial-time algorithm to achieve it, provided that the input representations are 
from L. When such an algorithm does not exist for sure or unless P = NP, one says that L does not offer the query or the 
transformation.

When no class of propositional representations offers all the transformations one would expect, an approach consists 
in leaving some of them implicit. This is the key idea underlying closure principles as introduced in this paper: instead of 
performing some computationally expensive transformations on representations, one just remembers in the representations 
that the transformations have to be done. This leads to extend the previous classes to new ones, which are at least as suc-
cinct, and for which implicit transformations are for free. Another nice effect of some implicit transformations on incomplete 
propositional languages is to recover completeness, i.e., the ability to represent any Boolean function.

In this paper, we investigate the disjunctive closure principles, i.e., disjunction [∨], existential quantification [∃], and their 
combinations. The disjunction principle [∨] when applied to a class L of representations leads to a class L[∨], the disjunc-
tion closure of L, which qualifies disjunctions of representations from L, while the existential quantification principle [∃] 
applied to a class L leads to a class L[∃], the existential closure of L, which qualifies existentially quantified representa-
tions from L. L[∨, ∃], the full disjunctive closure of L, is obtained by applying both disjunctive closure principles to L. We 
provide a number of characterization results concerning the corresponding closures. Especially, we show that applying at 
most once each disjunctive closure principle on L is enough, in the sense that applying one of them twice or more leads 
to classes polynomially equivalent to L. We also identify the queries and transformations which are preserved by applying 
disjunctive closure principles.

In addition, we extend the KC map with new classes of propositional representations obtained as disjunctive closures of 
several incomplete propositional languages, namely the well-known Krom CNF fragment KROM (also known as the bijunctive 
fragment) [23] the Horn CNF fragment HORN [24], and the affine fragment AFF (also known as the biconditional fragment) 
[25], as well as K/H (Krom or Horn CNF formulae) and renH, the language of renamable Horn CNF formulae [26]. Each of 
these languages is a well-known polynomial class for the satisfiability problem sat (i.e., it offers CO), but none of them is 
fully expressive w.r.t. propositional logic (there exist propositional formulae which cannot be represented in any of them), 
which drastically restricts their attractiveness for the KC purpose. Importantly, switching from any of those languages to its 
disjunction closure or to its full disjunctive closure leads to recover a fully expressive propositional language. This is crucial 
for many applications.

The rest of the paper is organized as follows. In Section 2, some formal preliminaries about graph-based, quantified, 
propositional representations are provided. In Section 3, we make precise the queries and transformations of interest, and 
extend the notions of expressiveness, succinctness and polynomial translations to any subsets of the class of graph-based, 
quantified, propositional representations. In Section 4, the concepts of disjunctive closures of a class of propositional repre-
sentations are defined and we derive a number of characterization results about them. In Section 5, the disjunctive closures 
of KROM, HORN, K/H, renH, and AFF are considered and we analyze them along the lines of the KC map. Finally, Section 6

concludes the paper by discussing the results, pointing out the disjunctive closures which appear as the best target classes 
for the KC purpose; it also gives some perspectives for further research.

2. Quantified propositional representations

2.1. Syntax

In this paper, we consider subsets of the class C-QDAG of quantified propositional representations over a countably 
infinite set PS of propositional variables, given a finite set C of propositional connectives. Each connective c ∈ C is supposed 
to have a fixed, finite arity. Leaf nodes of such DAGs are labeled by literals, where a literal (over V ⊆ PS) is an element x ∈ V

(a positive literal) or a negated one ¬x (a negative literal), or a Boolean constant (⊤ and ⊥). LV is the set of all literals 
over V . Literal l is the complementary literal of literal l, so that ⊤ = ⊥, ⊥ = ⊤, x = ¬x and ¬x = x. For a literal l different 
from a Boolean constant, var(l) denotes the corresponding variable: for x ∈ PS, we have var(x) = x and var(¬x) = x.

Formally, C-QDAG is given by:

Definition 1 (C-QDAG). C-QDAG is the set of all finite, single-rooted DAGs (also referred to as “representations”) α where:

• each leaf node of α is labeled by a literal l over PS,
• each internal node of α is labeled by a connective c ∈ C and has as many children as required by c (it is then called a 

c-node), or is labeled by a quantification ∃x or ∀x (where x ∈ PS) and has a single child.1

1 Each binary connective c which is associative (like ∧, ∨, ⊕) corresponds to a family of connectives (with the same name c) of arity i with i ≥ 2. For 
each i ≥ 2, the connective c of arity i is defined by: for every i-tuple 〈x1, . . . , xi〉 of Boolean values, c(x1, . . . , xi) = c(x1, c(x2, c(. . . , c(xi−1, xi)) . . .)).



Fig. 1. A C-QDAG representation with C = {∧,∨,¬,⊕}.

Fig. 2. A C-QDAG formula with C = {∧,∨,¬,⊕}.

The size |α| of a C-QDAG representation α is the number of nodes plus the number of arcs in the DAG. Var(α) denotes 
the set of free variables of α, i.e., those variables x for which there exists a leaf node Nx of α labelled by a literal l such 
that var(l) = x and there is a path from the root of α to Nx such that no node from it is labelled by ∃x or ∀x. Clearly 
enough, determining whether a given x ∈ PS belongs to Var(α) can be done in time polynomial in the size of α2; similarly, 
computing Var(α) can also be achieved in time polynomial in the size of α.

Fig. 1 presents a C-QDAG representation α with C = {∧, ∨, ¬, ⊕}. Its set of free variables is Var(α) = {q, r}.
As Fig. 1 exemplifies it, a C-QDAG mainly corresponds to a Quantified Boolean Circuit [27]. Abusing words, such DAG-

based representations are also referred to as “formulae” in the KC literature, and classes of such representations are called 
“languages”. In the following, we will only use the term “formula” for designating a tree-shaped representation of a Boolean 
function, and the term “language” for sets of formulae. Fig. 2 gives a C-QDAG formula with C = {∧, ∨, ¬, ⊕}.

Many classes of propositional representations considered so far as target classes for KC are subsets of C-QDAG with 
C = {∧, ∨, ¬, ⊕}, and typically subsets of C-DAG, the subset of C-QDAG with C = {∧, ∨, ¬, ⊕} where no node labeled 
by a quantification is allowed. Especially, the propositional DAGs considered in [14] are C-DAG representations with C =
{∧, ∨, ¬}, and the classes considered in [1] are subsets of DAG-NNF (the non-quantified DAGs with C = {∧, ∨}). Clearly 
enough, for each non-quantified representation α from C-DAG, Var(α) coincides with the set of variables occurring in α.

In Fig. 1, the DAG rooted at the ∧ node is a C-DAG representation with C = {∧, ∨, ¬} and the DAG rooted at the ∨
node is a DAG-NNF representation. DNNF is the subset of DAG-NNF consisting of DAGs where each ∧-node ∧(α1, . . . , αk)

is decomposable, which means that ∀i, j ∈ {1, . . . , k}, if i 6= j then Var(αi) ∩ Var(α j) = ∅. d-DNNF is the subset of DNNF
where every ∨-node ∨(α1, . . . , αk) is deterministic, which means that ∀i, j ∈ {1, . . . , k}, if i 6= j then αi ∧ α j is inconsistent. 
BDD is the subset of C-DAG with C = {ite} which consists of DAGs α such that every leaf node is labelled by a Boolean 
constant, ⊤ or ⊥. ite is a ternary connective (“ite” stands for “if ... then ... else ...”). Usually, instead of labeling a decision 
node N = 〈x, N+, N−〉 of a BDD formula by the name of the connective used (i.e., “ite”) and considering three children for it 

2 The algorithm consists in labeling each node N of α by a set of variables VN ; the nodes are considered in inverse topological ordering, VN = var(l)

when N is a leaf node labeled by l, VN = VM \ {x} when N is an internal node labeled by ∃x or ∀x and M is the child of N , VN =
⋃

Mi child of VN
VMi

when 
N is an internal node labeled by a connective c ∈ C ; Var(α) is equal to VNα where Nα is the root of α.



(one for x, one for N+ and one for N−), N is labelled by x and has only two children (one for N+ and one for N−). Given a 
total, strict ordering < over PS, the class OBDD< is the subset of BDD which consists of DAGs α such that every path from 
the root of α to a leaf node is compatible with <.

As usual, a clause (resp. a term) is a finite disjunction (resp. conjunction) of literals. CLAUSE is the subset of DAG-NNF
consisting of all clauses, and TERM is the subset of DAG-NNF consisting of all terms. NNF is the subset of DAG-NNF consist-

ing of formulae (i.e., tree-shaped representations). CNF is the subset of NNF consisting of all conjunctions of clauses, while 
DNF is the subset of NNF consisting of all disjunctions of terms. PI is the subset of CNF consisting of prime implicates 
formulae (also known as Blake formulae); a PI formula is a CNF formula, the conjunction of all clauses from the set PI(α)

for some C-QDAG representation α; PI(α) contains the prime implicates of α, i.e., the logically strongest clauses which are 
implied by α (one representative per equivalence class is considered, only). An essential prime implicate of α is a prime im-

plicate δ of α such that if the clause equivalent to δ is removed from PI(α), the conjunction of the clauses from the resulting 
set is no longer equivalent to α. For instance, if α = (p ⇒ q) ∧ (q ⇒ r) ∧ (p ⇒ (r ∨ s)), then PI(α) = {¬p ∨ q, ¬q ∨ r, ¬p ∨ r}. 
¬p ∨ q and ¬q ∨ r are essential prime implicates of α, while ¬p ∨ r is not. An important point is that any CNF formula 
equivalent to a propositional representation α contains (up to logical equivalence) every essential prime implicate of α.

For space reasons, we do not provide hereafter the definitions of the propositional classes of representations DNNFT and 
IP (see [1,18] for formal definitions).

2.2. Semantics

Let us recall that an interpretation (or world) over V ⊆ PS is a mapping ω from V to BOOL = {0, 1}. Interpretations are 
sometimes viewed as subsets of PS, consisting of all the variables that are set to 1 by the interpretations. When a total, 
strict ordering < over PS is considered, the restriction of an interpretation ω over a finite subset {x1, . . . , xn} of PS can also 
be represented as a bit vector; for instance, the restriction of ω over {a, b, c} such that ω(a) = 1, ω(b) = 0, and ω(c) = 0 can 
be represented as 100 when a, b, c are such that a < b < c. For any x ∈ V , ω−x is the interpretation over V which coincides 
with ω on every variable of V , except on x; formally, ω−x(y) = ω(y) if y 6= x, = 1 − ω(x) if y = x.

We are now ready to define the semantics of C-QDAG representations in an interpretation ω over PS:

Definition 2 (Semantics of C-QDAG representations). The semantics of a C-QDAG representation α in an interpretation ω over 
PS is the truth value ❏α❑(ω) from BOOL defined inductively as follows:

• If α = ⊤, then ❏α❑(ω) = 1.

• If α = ⊥, then ❏α❑(ω) = 0.

• If α is a positive literal x, then ❏α❑(ω) = ω(x).

• If α is a negative literal ¬x, then ❏α❑(ω) = 1 − ω(x).

• If α = c(β1, . . . , βn), where c ∈ C has arity n, then ❏α❑(ω) = ❏c❑(❏β1❑(ω), . . . , ❏βn❑(ω)), where ❏c❑ is the Boolean 
function from BOOLn to BOOL, which is the semantics of c.

• If α = ∃x.β , then ❏α❑(ω) = 1 iff ❏β❑(ω) = 1 or ❏β❑(ω−x) = 1.

• If α = ∀x.β , then ❏α❑(ω) = 1 iff ❏β❑(ω) = 1 and ❏β❑(ω−x) = 1.

An interpretation ω over PS is said to be a model of α ∈ C-QDAG, noted ω |H α, if and only if ❏α❑(ω) = 1. If α has a 
model, then it is consistent; if every interpretation over PS is a model of α, then α is valid. If every model of α is a model 
of β ∈ C-QDAG, then β is a logical consequence of α, noted α |H β . Mod(α) denotes the set of models of α over Var(α). 
Furthermore, when both α |H β and β |H α hold, α and β are logically equivalent, noted α ≡ β .

For instance, with C = {∧, ∨, ¬, ⊕}, the C-QDAG representation given in Fig. 1 is equivalent to the C-QDAG formula given 
in Fig. 2.

By structural induction one can easily show that the semantics of any C-QDAG representation α depends only on its free 
variables, in the sense that, for any interpretation ω′ over PS which coincides with a given interpretation ω on all the free 
variables of α, ω is a model of α if and only if ω′ is a model of α. Accordingly, the semantics of a C-QDAG representation 
α in an interpretation ω over PS is fully determined by α and the restriction of ω over Var(α).

Clearly enough, renaming at the same time a quantified occurrence of a variable x in a quantification ∃x or ∀x occurring 
in a C-QDAG formula α, and every occurrence of x in α which depends on the quantification leads to a C-QDAG formula 
equivalent to α. Furthermore, such a renaming process can be achieved in time linear in the size of α.

However, things are much more tricky when general C-QDAG representations (not reduced to formulae) are consid-
ered. Consider for instance the quantification ∃q occurring in the C-QDAG representation α reported at Fig. 1, where 
C = {∧, ∨, ¬, ⊕}. The occurrence of variable q in the leaf of α labelled with literal q depends on this quantification. Replac-
ing q by the fresh variable s in ∃q and at this occurrence would not lead to a representation equivalent to α since s would 
be a free variable of the resulting representation. Indeed, there exist four paths from the root of α to that leaf, and three 
of them do not contain any quantified occurrence of q. This is salient on the C-QDAG formula equivalent to α reported at 
Fig. 2, and obtained by “unfolding” α. Thus, when some variable occurrence can be both free and bound, renaming quanti-
fied variables while preserving equivalence can be a computationally demanding task (the unfolding process may easily lead 
to an exponential blow-up of the input representation). Actually, when C ⊇ {∧, ∨}, the possibility of having some variable 



occurrences both free and bound (or to depend on different existential quantifications) in C-QDAG representations not con-
taining universal quantifications is enough to simulate universal quantifications in them (see [27]). As a consequence, the 
corresponding class of DAGs is strictly more succinct than the corresponding language of formulae. On the other hand, some 
problems are computationally easier when formulae (and not DAGs) are considered; for instance, when universal quantifi-
cations are disabled, the model checking problem for C-QDAG formulae with C ⊇ {∧, ∨} is “only” NP-complete, while it is
PSPACE-complete when the full class of C-QDAG representations without universal quantifications is considered.

Conventionally, the representation αN rooted at a decision node N = 〈x, N+, N−〉 over x ∈ PS in the standard repre-
sentation of an ordered binary decision diagram (i.e., an OBDD< representation) is such that αN ≡ ite(x, αN+ , αN− ) ≡
(x ∧ αN+ ) ∨ (¬x ∧ αN− ). αN+ (resp. αN− ), the representation associated with node N+ (resp. N−), is the conditioning of 
α by x (resp. ¬x), i.e., the representation obtained by replacing every occurrence of x in αN by ⊤ (resp. ⊥).

Finally, we consider the following notations. If α ∈ C-QDAG and X = {x1, . . . , xn} ⊆ PS, then ∃X .α is a short for

∃x1.
(

∃x2.(...∃xn.α)...
)

and ∀X .α is a short for

∀x1.
(

∀x2.(...∀xn.α)...
)

(these notations are well-founded since whatever the chosen ordering on X , the resulting representations are logically 
equivalent).

2.3. KROM, HORN, AFF, K/H, and renH

In the following, we will focus on several well-known propositional languages, namely the Krom CNF language KROM
(also known as the bijunctive fragment) [23], the Horn CNF language HORN [24], and the affine language AFF (also known 
as the biconditional fragment) [25], as well as K/H (Krom or Horn CNF formulae) and renH, the language of renamable 
Horn CNF formulae [26].

The languages KROM, HORN, AFF, K/H, and renH are formally defined as follows:

Definition 3 (KROM, HORN, AFF, K/H, and renH).

• The language KROM is the subset of all CNF formulae in which each clause is binary, i.e., it contains at most two literals.
• The language HORN is the subset of all CNF formulae in which each clause is Horn, i.e., it contains at most one positive 

literal.

• The language K/H is the union of KROM and HORN.
• The language renH is the subset of all CNF formulae α for which there exists a subset V of Var(α) (called a Horn 

renaming for α) such that the formula noted V (α) obtained by substituting in α every literal l of LV by its comple-

mentary literal l̄ is a HORN formula.

• The language AFF is the subset of C-DAG with C = {∧, ¬, ⊕}, consisting of conjunctions of XOR-clauses where a XOR-
clause is a finite XOR-disjunction of literals (the XOR connective is denoted by ⊕).

Here are some examples of formulae from KROM, HORN, renH, and AFF:

• (x ∨ y) ∧ (¬y ∨ z) is a KROM formula.

• (¬x ∨ ¬y ∨ z) ∧ (¬y ∨ z) is a HORN formula.

• (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ z) is a renH formula.

V = {x, z} is a Horn renaming for it.
• (x ⊕ ¬y ⊕ ⊤) ∧ (¬x ⊕ y ⊕ z) is an AFF formula.

Clearly enough, determining whether a given C-QDAG representation α (for any fixed C ) is a KROM (resp. HORN, K/H, 
AFF) formula can be easily achieved in time polynomial in the size of α. Note also that there exists linear time algorithms 
for recognizing renH formulae (see e.g. [28,29]); furthermore, such recognition algorithms typically give a Horn renaming 
when it exists.

KROM, HORN, AFF, K/H, and renH are known as polynomial classes for the sat problem (i.e., the restriction of sat to 
any of them is in polynomial time – stated otherwise, each of them satisfies CO). However, none of them is fully expressive 
w.r.t. propositional logic (there exist propositional formulae, like (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z), which cannot be represented 
in any of them); this severely restricts their attractiveness for the KC purpose.

Interestingly, KROM, HORN, and AFF have semantical characterizations in terms of closures of sets of models:

• A set S of interpretations over a finite V ⊆ PS is the set of models of a KROM formula α such that Var(α) = V if and 
only if it is closed for majority [30,25], i.e., ∀ω1, ω2, ω3 ∈ S , the interpretation maj(ω1, ω2, ω3) over V belongs to S as 
well. Here maj(ω1, ω2, ω3) is defined by ∀x ∈ V , maj(ω1, ω2, ω3)(x) = 1 if at least two interpretations among ω1, ω2, ω3

give the truth value 1 to x.



• A set S of interpretations over a finite V ⊆ PS is the set of models of a HORN formula α such that Var(α) = V if 
and only if it is closed for the bitwise AND connective [31,32], i.e., ∀ω1, ω2 ∈ S , the interpretation and(ω1, ω2) over V
belongs to S . Here and(ω1, ω2) is defined by ∀x ∈ V , and(ω1, ω2)(x) = 1 if ω1(x) = ω2(x) = 1.

• A set S of interpretations over a finite V ⊆ PS is the set of models of an AFF formula α such that Var(α) = V if and 
only if S is closed for the ternary ⊕ connective [30,25], i.e., ∀ω1, ω2, ω3 ∈ S , the interpretation ⊕(ω1, ω2, ω3) over V
belongs to S . Here ⊕(ω1, ω2, ω3) is defined by ∀x ∈ V , ⊕(ω1, ω2, ω3)(x) = ω1(x) ⊕ ω2(x) ⊕ ω3(x).

These characterization results can be exploited to show that some propositional formulae cannot be expressed as KROM
(resp. HORN, AFF) formulae.

3. Queries, transformations, expressiveness and succinctness

Let us now briefly recall the sets of queries and transformations used for comparing propositional languages in [1], as 
well as the notions of expressiveness and succinctness; their importance is discussed in depth in [1], so we refrain from 
recalling it here.

3.1. Queries

The basic queries considered in [1] and subsequent papers concern DAG-NNF representations; they include tests for con-
sistency (CO), validity (VA), clausal entailment (CE), implicants (IM), equivalence (EQ), sentential entailment (SE), counting 
(CT) and enumerating theory models (ME). We extend them to C-QDAG representations and add to them MC, the model 
checking query, which is trivially offered by unquantified representations, but not by quantified representations in the gen-
eral case.

Definition 4 (Queries). Let L denote any subset of C-QDAG.

• L satisfies CO, the consistency query (resp. VA, the validity query) if there exists a polynomial-time algorithm that maps 
every representation α from L to 1 if α is consistent (resp. valid), and to 0 otherwise.

• L satisfies CE, the clausal entailment query, if there exists a polynomial-time algorithm that maps every pair 〈α, δ〉, 
where α is a representation from L and δ is a clause, to 1 if α |H δ holds, and to 0 otherwise.

• L satisfies EQ, the equivalence query (resp. SE, the sentential entailment query) if there exists a polynomial-time algo-
rithm that maps every pair 〈α, β〉 of representations from L to 1 if α ≡ β (resp. α |H β) holds, and to 0 otherwise.

• L satisfies IM, the implicant query, if there exists a polynomial-time algorithm that maps every pair 〈α, γ 〉, where α is 
a representation from L and γ is a term, to 1 if γ |H α holds, and to 0 otherwise.

• L satisfies CT, the model counting query, if there exists a polynomial-time algorithm that maps every representation α
from L to a nonnegative integer that represents the number of models of α over Var(α) (in binary notation).

• L satisfies ME, the model enumeration query, if there exists a polynomial p(., ). and an algorithm that outputs all models 
of an arbitrary representation α from L in time p(n, m), where n is the size of α and m is the number of its models 
over Var(α).

• L satisfies MC, the model checking query, if there exists a polynomial-time algorithm that maps every pair 〈α, ω〉, where 
α is a representation from L and ω is an interpretation over Var(α), to 1 if I is a model of α, and to 0 otherwise.

3.2. Transformations

The basic transformations considered in [1] are conditioning (CD), (possibly bounded) closures under the connectives3

∧, ∨, and ¬ (∧C, ∧BC, ∨C, ∨BC, ¬C) and (possibly bounded) forgetting which can be viewed as a closure operation under 
existential quantification (FO, SFO). Forgetting is an important transformation as it allows us to focus/project a represen-
tation on a set of variables, which proves helpful in many applications, including model-based diagnosis [33], reasoning 
about actions [34], and reasoning under inconsistency [35,36]. All those transformations concern DAG-NNF representations. 
We extend them to C-QDAG representations and enrich the list with two additional transformations, which are dual to (FO, 
SFO), namely “ensuring” (EN) and the bounded restriction of it (SEN). Ensuring amounts to eliminating universal quantifi-
cations and allows us to project a representation on a set of variables in a robust way, i.e., independently of the values of 
the removed variables. This transformation is central in decision making under uncertainty and non-deterministic planning, 
see e.g. [37].

3 Closures under other connectives could also be easily defined but seem to be less significant.



Definition 5 (Transformations). Let L denote any subset of C-QDAG.

• L satisfies CD, the conditioning transformation, if there exists a polynomial-time algorithm that maps every pair 〈α, γ 〉, 
where α is a representation from L and γ is a consistent term, to a representation from L that is logically equivalent 
to ∃Var(γ ).(α ∧ γ ).

• L satisfies FO, the forgetting transformation, if there exists a polynomial-time algorithm that maps every pair 〈α, X〉, 
where α is a representation from L and X is a set of variables from PS, to a representation from L equivalent to ∃X.α. 
If the property holds for each singleton X, we say that L satisfies SFO (singleton forgetting).

• L satisfies EN, the ensuring transformation, if there exists a polynomial-time algorithm that maps every pair 〈α, X〉, 
where α is a representation from L and X is a set of variables from PS, to a representation from L equivalent to ∀X.α. 
If the property holds for each singleton X, we say that L satisfies SEN (singleton ensuring).

• L satisfies ∧C, the closure under conjunction transformation (resp. ∨C, the closure under disjunction transformation) if 
there exists a polynomial-time algorithm that maps every finite set of representations α1, . . . , αn from L to a represen-
tation of L that is equivalent to α1 ∧ . . . ∧ αn (resp. α1 ∨ . . . ∨ αn).

• L satisfies ∧BC, the bounded closure under conjunction transformation (resp. ∨BC, the bounded closure under disjunction
transformation), if there exists a polynomial-time algorithm that maps every pair of representations α and β from L to 
a representation of L that is equivalent to α ∧ β (resp. α ∨ β).

• L satisfies ¬C, the closure under negation transformation, if there exists a polynomial-time algorithm that maps every 
representation α from L to a representation of L which is equivalent to ¬α.

When α is a C-DAG representation (i.e., a non-quantified representation), the conditioning of α by γ can be defined in 
an equivalent, yet simpler way, as the representation α|γ obtained by replacing in α every occurrence of variable x by ⊤
(resp. ⊥) when x (resp. ¬x) is a literal of γ . Such a characterization cannot be extended to C-QDAG representations in 
the general case. Especially, considering only those variables x occurring free in α as candidates for the replacement is not 
enough. Indeed, since DAG-based representations are considered, it can be the case that in α one can find a leaf node N
labeled by x such that one path from the root of α to this leaf node does not contain any node labeled by a quantification 
on x, while other paths from the root to N contain such quantifications (see [27]).

3.3. Expressiveness, succinctness, and polynomial translations

We consider three notions of translations on classes of propositional representations (here, subsets of C-QDAG), starting 
from the less demanding one, namely expressiveness:

Definition 6 (Expressiveness). Let L1 and L2 be two subsets of C-QDAG. L1 is at least as expressive as L2 , denoted L1 ≤e L2 , 
if for every representation α ∈L2 , there exists an equivalent representation β ∈L1 .

A first refinement of such a notion of translatability consists in considering only polynomial-space translations, i.e., the 
size of the translated representation must remain polynomial in the size of the input representation:

Definition 7 (Succinctness). Let L1 and L2 be two subsets of C-QDAG. L1 is at least as succinct as L2 , denoted L1 ≤s L2 , 
if there exists a polynomial p such that for every representation α ∈ L2 , there exists an equivalent representation β ∈ L1

where |β| ≤ p(|α|).

Finally, we consider still more demanding translations, namely polynomial-time translations:

Definition 8 (Polynomial translation). Let L1 and L2 be two subsets of C-QDAG. L2 is said to be polynomially translatable
into L1 , noted L1 ≤p L2 , if there exists a (deterministic) polynomial-time algorithm f such that for every α ∈L2 , we have 
f (α) ∈L1 and f (α) ≡ α. We also say that α is polynomially translatable into f (α).

Clearly enough, ≤e , ≤s , and ≤p are pre-orders (i.e., reflexive and transitive relations) over the subsets of C-QDAG. Fur-
thermore, we have the inclusions:

≤p ⊂ ≤s ⊂ ≤e

For each relation ≤∗ among ≤e , ≤s , and ≤p , the relation ∼∗ denotes the symmetric part of ≤∗ , defined by L1 ∼∗ L2

if L1 ≤∗ L2 and L2 ≤∗ L1 . By construction, each ∼∗ is an equivalence relation (i.e., a reflexive, symmetric and transitive 
relation). On the other hand,the relation <∗ denotes the asymmetric part of ≤∗ , defined by L1 <∗ L2 if L1 ≤∗ L2 and 
L2 £∗ L1 . By construction, each <∗ is a strict order (i.e., an irreflexive and transitive relation).

In the following, L1 £∗
s L2 means that L1 £s L2 unless the polynomial hierarchy PH collapses (which is considered very 

unlikely in complexity theory).



When L1 ≤e L2 holds, every representation from L2 can be translated into an equivalent representation from L1 . The 
minimal elements w.r.t. ≤e (i.e., the most expressive elements) of the set of all subsets of C-QDAG when C is any functionally 
complete set of connectives (especially, as soon as C contains ∨ and ∧ since leaf nodes of C-QDAG representations are 
labeled by literals) are called complete propositional classes: they can provide a representation (up to logical equivalence) of 
any Boolean function.

When L1 ∼e L2 (resp. L1 ∼s L2 , L1 ∼p L2), L1 and L2 are said to be equally expressive (resp. equally succinct, polyno-
mially equivalent).

Whenever L1 is polynomially translatable into L2 , every query which can be answered in polynomial time in L2 can 
also be answered in polynomial time in L1; and conversely, every query which cannot be answered in polynomial time 
in L1 unless P = NP cannot be answered in polynomial time in L2 , unless P = NP. Furthermore, polynomially equivalent 
classes are equally efficient in the sense that they possess the same set of tractable queries and transformations.

4. On closures of propositional representations

Intuitively, a closure principle applied to a class L of propositional representations defines a new class, called a closure 
of L, through the (implicit) application of “operators” (i.e., connectives from C or quantifications) to the representations 
from L. Formally:

Definition 9 (Closure). Let L ⊆ C-QDAG and △ ⊆ C ∪ {∀, ∃}. The closure L[△] of L by △ is the subset of C-QDAG inductively 
defined as follows4:

1. if α ∈L, then α ∈L[△],
2. if c ∈ △ is an n-ary connective and α1, . . . , αn are elements of L[△] such that ∀i, j ∈ {1, . . . , n}, if i 6= j then αi and α j

do not share any common (nonempty) subgraphs, then c(α1, . . . , αn) ∈L[△],
3. if c ∈ △ is a quantifier, x ∈ PS, and α ∈L[△], then cx.α ∈L[△].

Each element of L[△] can be viewed as a “tree” which “internal nodes” are labeled by connectives from C or quan-
tifications and its “leaf nodes” correspond to “independent” representations from L. Accordingly, the representations αi

considered in item 2. of Definition 9 do not share any common subgraphs.
Clearly, if there exists a polynomial-time algorithm for determining whether a given representation α ∈ C-QDAG belongs 

or not to L, then there also exists a polynomial-time algorithm for determining whether a given representation α ∈ C-QDAG

belongs or not to the closure L[△] of L by △.

We have derived the following (easy) proposition, which rules the inclusions between closures depending on the way 
their sets of connectives are related by set inclusion:

Proposition 1. For every subset L, L′ of C-QDAG and every subset △1 , △2 of C ∪ {∃, ∀}, we have:

0. L ⊆L[△1], and if L ⊆L′ , then L[△1] ⊆L′[△1].
1. (L[△1])[△2] ⊆L[△1 ∪ △2].
2. (L[△1])[△1] =L[△1].
3. If △1 ⊆ △2 then L[△1] ⊆L[△2].
4. If △1 ⊆ △2 then (L[△1])[△2] =L[△2] and (L[△2])[△1] =L[△2].

Some additional properties stating how some closures of a class L can be composed, can be derived when bound 
variables can be “freely” renamed in the L representations. The property of stability by uniform renaming, given at Defini-
tion 10, characterizes the subsets of C-QDAG for which, intuitively, the choice of variable names in the L representations 
does not really matter:

Definition 10 (Stability by uniform renaming). Let L be any subset of C-QDAG. L is stable by uniform renaming if for every 
α ∈ L, for every non-empty subset V of variables occurring in α, there exist arbitrarily many distinct bijections ri (i ∈ N) 
from V to subsets V i of fresh variables from PS (i.e., for each i, j ∈ N with i 6= j, we have V i ∩ V j = V i ∩ V = ∅) such 
that the representation ri(α) obtained by replacing in α (in a uniform way) every occurrence of x ∈ V (either quantified or 
non-quantified) by ri(x) belongs to L as well.

This condition is not very demanding: all the “standard” classes of propositional representations (quantified or not) are 
stable by uniform renaming (when based on a countably infinite set PS as this is the case here). Special attention must 
nevertheless be paid to the OBDD< language, and more generally to every class based on an ordered set of propositional 

4 In order to alleviate the notations, when △ = {δ1, . . . , δn}, we write L[δ1, . . . , δn] instead of L[{δ1, . . . , δn}].



Fig. 3. An OBDD< representation of x0 ∨ x1 .

variables. For the OBDD< case where < is a strict and complete ordering over PS we may assume the ordered set (PS, <) to 
be of order type η (η is the order type of the set of rational numbers equipped with its usual ordering [38]). This restriction 
is harmless since the set of variables occurring in any OBDD< representation is finite. In a nutshell, whatever the way the 
variables occurring in a given OBDD< representation α are ordered w.r.t. <, one must be able to “insert” in this ordering 
arbitrarily many fresh variables between two variables of α while preserving the way other variables are ordered. Order 
type η clearly allows it (between two distinct rational numbers one can find countably many rationals). To make things 
clearer, let us give a counter-example: let PS = {xi | i ∈ N} ordered in such a way that for every i ∈N, xi < xi+1 . Consider an 
OBDD< representation of x0 ∨ x1 as given in Fig. 3. < is not of type η. Take V = {x0}: x0 cannot be renamed into a different 
variable from PS without questioning the ordering requirement over OBDD< , which shows that OBDD< is not stable by 
uniform renaming in this case.

Straightforwardly, the closure by any set of connectives/quantifiers of any class of propositional representations, which is 
stable by uniform renaming, also is stable by uniform renaming.

We are now ready to present more specific results. The following polynomial (dual) equivalences, showing that ex-
istential quantifications (resp. universal quantifications) when viewed as “operators” “distribute” over disjunctions (resp. 
conjunctions), are well-known:

∃x.(α1 ∨ . . . ∨ αn) ≡ (∃x.α1) ∨ . . . ∨ (∃x.αn),

∀x.(α1 ∧ . . . ∧ αn) ≡ (∀x.α1) ∧ . . . ∧ (∀x.αn).

It can then be shown that:

Proposition 2. Let L be any subset of C-QDAG s.t. L is stable by uniform renaming. We have:

• (L[∃])[∨] ∼p (L[∨])[∃] ∼p L[∨, ∃].
• (L[∀])[∧] ∼p (L[∧])[∀] ∼p L[∧, ∀].

Fig. 4 illustrates the polynomial equivalences between disjunctive closures given at Proposition 2.

Proposition 1 and Proposition 2 show together that when △ = {∨, ∃} (resp. {∧, ∀}) closing L[△] by subsets of △ in an 
iterative fashion does not lead to a “new” class, i.e., a class which is not polynomially equivalent to L. Especially, we have

(

L[∨,∃]
)

[∃] ∼p

(

L[∨,∃]
)

[∨] ∼p L[∨,∃].

This shows, so to say, that the “sequential” closure of a propositional class, stable by uniform renaming, by a set of operators 
among {∨, ∃} (resp. among {∧, ∀}) is polynomially equivalent to its “parallel” closure. No similar result can be systematically 
guaranteed for arbitrary choices of classes and operators. For instance, if L is the set of literals over PS, then the “sequential” 
closure (L[∨])[∧] is the set of all CNF formulae, the “sequential” closure (L[∧])[∨] is the set of all DNF formulae, and the 
“parallel” closure L[∨, ∧] is the set of all NNF representations. It is well-known that those three languages are not pairwise 
polynomially equivalent (indeed, we have CNF£s DNF, DNF£s CNF, NNF<s CNF, and NNF<s DNF, see e.g. [39]). Similarly, 
if L = CLAUSE, then (L[∧])[∃] and L[∧, ∃] are polynomially equivalent to CNF[∃], but (L[∃])[∧] is polynomially equivalent 
to CNF, which is not polynomially equivalent to CNF[∃]. Indeed, whatever C , C-DAG is polynomially translatable into CNF[∃]
using Tseitin’s extension principle [40], while CNF is not at least as succinct as C-DAG as soon as C ⊇ {∧, ∨, ¬} (indeed, 
CNF is not at least as succinct as the subset DNF of NNF, which is itself a subset of C-DAG in this case).

We have derived the following proposition, which relates the queries and the transformations offered by L, with the 
queries and transformations offered by its disjunctive closures L[∨] (the disjunction closure of L), L[∃] (the existential 
closure of L), and L[∨, ∃] (the full disjunctive closure of L).

Proposition 3. Let L be any subset of C-QDAG s.t. L is stable by uniform renaming.

• If L satisfies CO (resp. CD), then L[∨], L[∃] and L[∨, ∃] satisfy CO (resp. CD).
• If L satisfies CO and CD, then L satisfies CE and ME.

• If L satisfies CO and CD, then L, L[∨], L[∃] and L[∨, ∃] satisfy MC.

• L[∨] and L[∨, ∃] satisfy ∨C (hence ∨BC) and L[∃] and L[∨, ∃] satisfy FO (hence SFO).



Fig. 4. Polynomial equivalences between disjunctive closures. The representation α at the top of the picture belongs to L[∨, ∃]. β1[X, Y , Z , T ] and 
β2[X, Y , Z , T ] denote propositional representations (not necessarily tree-structured ones) from L such that Var(β1) = Var(β2) = X ∪ Y ∪ Z ∪ T , where 
X , Y , Z , and T are pairwise disjoint, finite subsets of PS. The representation α∃∨ at the bottom, left-hand side of the picture is an (L[∨])[∃] representation 
into which α can be polynomially translated. The representation α∨∃ at the bottom, right-hand side of the picture is an (L[∃])[∨] representation into 
which α can be polynomially translated.

• If L satisfies FO (resp. SFO), then L[∨] satisfies FO (resp. SFO).
• If L satisfies ∧C (resp. ∧BC, ∨C, ∨BC), then L[∃] satisfies ∧C (resp. ∧BC, ∨C, ∨BC).

Note that applying disjunctive closures do not preserve other queries or transformations in the general case. Thus:

• If L satisfies VA (resp. IM, CT, EQ, and SE), then it can be the case that L[∨] does not satisfy it. For instance, TERM
satisfies each of VA, IM, CT, EQ, and SE, but TERM[∨] = DNF does not satisfy any of them unless P = NP [1].

• If L satisfies VA (resp. IM, CT, EQ, and SE), then it can be the case that L[∃] does not satisfy it. Thus, L = CNF satisfies 
VA and IM but CNF[∃] does not satisfy any of them unless P = NP; indeed, DNF (which does not offer any of them) 
is polynomially translatable into CNF[∃] using Tseitin’s transformation [40]. Similarly, L = HORN satisfies both EQ and 
SE, but HORN[∃] does not offer any of them (see Proposition 5). Finally, the subset L = d-DNF of DNF consisting of 
deterministic DNF formulae (i.e., the DNF formulae α =

∨n
i=1 γi such that for each i, j ∈ 1, . . . , n, if i 6= j, then the 

terms γi and γ j are such that γi ∧ γ j is inconsistent) satisfies CT, but d-DNF[∃] does not. Indeed, DNF is polynomially 
translatable into d-DNF[∃]: with each DNF formula α =

∨n
i=1 γi we can associate in polynomial time the equivalent 

d-DNF[∃] formula ∃{y1, . . . , yn}. 
∨n

i=1(yi ∧
∧i−1

j=1 ¬y j ∧ γi), where {y1, . . . , yn} is a set of fresh variables (disjoint from 
Var(α)).

• If L satisfies ∧C, then it can be the case that L[∨] does not satisfy it. Thus, L = TERM satisfies ∧C, but TERM[∨] = DNF

does not, unless P = NP [1].

• If L satisfies ¬C, then it can be the case that none of L[∨] and L[∃] satisfies it. Thus, L = OBDD< satisfies ¬C, 
but none of OBDD<[∨] and OBDD<[∃] satisfies ¬C unless P = NP. As to OBDD<[∨], this comes from the fact that 
TERM ≥p OBDD< , which implies that DNF ≥p OBDD<[∨]. Since every CNF formula α is polynomially translatable into 
the negation of a DNF formula β , if OBDD<[∨] would satisfy ¬C, then the consistency of α could be tested in poly-
nomial time by computing first an OBDD<[∨] representation equivalent to β , then “negating” it to reach an OBDD<[∨]
representation equivalent to α. Indeed, since OBDD< satisfies CO, OBDD<[∨] also satisfies CO (see Proposition 3). As 
to OBDD<[∃], we can make a rather similar proof given that OBDD<[∃] also satisfies CO (see again Proposition 3). To 



get the proof, it is enough to show that OBDD<[∨] ≥p OBDD<[∃]: let α =
∨n

i=1 αi be an OBDD<[∨] representation; let 
y1, . . . , yn be variables from PS \ Var(α) such that each yi (i ∈ 1, . . . , n) precedes every variable from Var(α). From α, 
we can generate in polynomial time the OBDD< representation

β =
〈

y1,α1,
〈

y2,α2, . . . , 〈yn,αn,⊥, 〉 . . .
〉〉

.

To conclude the proof it is enough to observe that α is equivalent to the OBDD<[∃] representation ∃{y1, . . . , yn}.β .
• If L satisfies EN, then it can be the case that L[∨] does not satisfy it. Thus, L = TERM satisfies EN, but TERM[∨] = DNF

does not, unless P = NP, since a DNF formula α is valid iff its universal closure ∀Var(α).α is valid iff ∀Var(α).α is 
consistent (since ∀Var(α).α has no free variable, it is equivalent to ⊤ or to ⊥, hence it is consistent precisely when it 
is valid), and DNF satisfies CO.

• If L satisfies EN, then it can be the case that L[∃] does not satisfy it. Thus, L = CNF satisfies EN, but CNF[∃] does not, 
unless PH collapses. This comes easily from the fact that the validity problem for CNF[∃] formulae of the form ∃X .α is 
Π

p
2 -complete. Indeed, ∃X .α is valid iff the (closed) quantified Boolean formula ∀Var(α) \ X .(∃X .α) is valid.

5. On the disjunctive closures of KROM, HORN, AFF, K/H, and renH

Let us now focus on the disjunctive closures of KROM, HORN, AFF, K/H, and renH.
First of all, it is obvious that the four languages KROM, HORN, K/H, and AFF are stable by uniform renaming. This is also 

the case for renH: if V is a Horn renaming for a renH formula α, and if α′
X is the CNF formula obtained by substituting in 

a uniform way in α every occurrence of a variable v from X ⊆ PS by the fresh variable v ′ , then α′
X also is a renH formula 

and V ′ = {v ∈ Var(α′) | v ∈ V \ X} ∪ {v ′ ∈ Var(α′) | v ∈ V ∩ X} is a Horn renaming for it.
Now, thanks to Propositions 1 and 2, it is enough to consider the three disjunctive closures L[∃], L[∨], and L[∨, ∃] with 

L being any on the five above languages. Clearly enough, the disjunction (resp. existential, full disjunctive) closure of any 
language among KROM, HORN, K/H, renH, and AFF is also stable by uniform renaming.

Applying the disjunctive closure principles [∨], [∃], and [∨, ∃] to the five languages KROM, HORN, K/H, renH, and AFF
leads to consider fifteen additional languages. The following easy result shows that some of the resulting languages do not 
need to be considered separately, because they are polynomially equivalent.

Proposition 4.

• KROM∼p KROM[∃].
• KROM[∨] ∼p KROM[∨, ∃].
• AFF∼p AFF[∃].
• AFF[∨] ∼p AFF[∨, ∃].

As a direct consequence, we have that KROM and KROM[∃] (resp. AFF and AFF[∃], KROM[∨] and KROM[∨, ∃], AFF[∨]
and AFF[∨, ∃]) are both (pairwise) equally succinct and equally expressive.

Accordingly, we focus in the following on the sixteen languages: KROM, HORN, K/H, renH, AFF, HORN[∃], K/H[∃], 
renH[∃], KROM[∨], HORN[∨], K/H[∨], renH[∨], AFF[∨], HORN[∨, ∃], K/H[∨, ∃], and renH[∨, ∃].

From Proposition 1, we get that:

KROM⊆ KROM[∨] ⊆ KROM[∨,∃]
HORN⊆ HORN[∃] ⊆ HORN[∨,∃]
HORN⊆ HORN[∨] ⊆ HORN[∨,∃]
K/H⊆ K/H[∃] ⊆ K/H[∨,∃]
K/H⊆ K/H[∨] ⊆ K/H[∨,∃]
renH⊆ renH[∃] ⊆ renH[∨,∃]
renH⊆ renH[∨] ⊆ renH[∨,∃]
AFF⊆ AFF[∨]

Obviously enough, from the definitions of the languages KROM, HORN, K/H, and renH, we also have the following 
inclusions:

KROM⊆ K/H

HORN⊆ K/H

HORN⊆ renH



Table 1

KROM, HORN, K/H, AFF, renH, their disjunction, existential and full dis-
junctive closures and the corresponding polynomial-time queries. 

√
means 

“satisfies” and ◦ means “does not satisfy unless P = NP”.

CO VA CE IM EQ SE CT ME MC

renH[∨,∃]
√

◦
√

◦ ◦ ◦ ◦
√ √

K/H[∨,∃]
√

◦
√

◦ ◦ ◦ ◦
√ √

HORN[∨,∃]
√

◦
√

◦ ◦ ◦ ◦
√ √

AFF[∨]
√

◦
√

◦ ◦ ◦ ◦
√ √

renH[∨]
√

◦
√

◦ ◦ ◦ ◦
√ √

K/H[∨]
√

◦
√

◦ ◦ ◦ ◦
√ √

HORN[∨]
√

◦
√

◦ ◦ ◦ ◦
√ √

KROM[∨]
√

◦
√

◦ ◦ ◦ ◦
√ √

renH[∃]
√ √ √ √

◦ ◦ ◦
√ √

K/H[∃]
√ √ √ √

◦ ◦ ◦
√ √

HORN[∃]
√ √ √ √

◦ ◦ ◦
√ √

AFF
√ √ √ √ √ √ √ √ √

renH
√ √ √ √ √ √

◦
√ √

K/H
√ √ √ √ √ √

◦
√ √

HORN
√ √ √ √ √ √

◦
√ √

KROM
√ √ √ √ √ √

◦
√ √

From such results, we immediately derive that:

KROM[∨] ⊆ K/H[∨]

HORN[∨] ⊆ K/H[∨]

HORN[∨] ⊆ renH[∨]

HORN[∃] ⊆ K/H[∃]

HORN[∃] ⊆ renH[∃]

HORN[∨,∃] ⊆ K/H[∨,∃]

HORN[∨,∃] ⊆ renH[∨,∃]

In addition, since every consistent KROM formula is a renH formula5 and since KROM satisfies CO, with every K/H

formula we can associate in polynomial time an equivalent renH formula, i.e., K/H≥p renH. As a consequence, we also get 
that

K/H[∨] ≥p renH[∨]

K/H[∃] ≥p renH[∃]

K/H[∨,∃] ≥p renH[∨,∃]

Finally, since for every subset L of C-QDAG, L ⊆L[∨] ⊆L[∨, ∃], ⊆ is included into ≥p , and both ⊆ and ≥p are transitive 
relations, a number of additional inclusions/polynomial translatability results can be directly obtained from the results 
above; they will be exploited in some forthcoming proofs.

5.1. Queries and transformations

As to queries, we have obtained the following results:

Proposition 5. The results in Table 1 hold.

As to transformations, we have obtained the following results:

Proposition 6. The results in Table 2 hold.

5 This is a direct consequence of the fact that a CNF formula α is renamable Horn precisely when there exists an interpretation ω such that at most one 
literal per clause of α is false in ω [26]; indeed, when α is a KROM formula, this last statement exactly means that α is consistent.



Table 2

KROM, HORN, K/H, AFF, renH, their disjunction, existential and full disjunctive closures 
and the corresponding polynomial-time transformations. 

√
means “satisfies,” • means 

“does not satisfy,” while ◦ means “does not satisfy unless P = NP.” ! means that the 
transformation is not always feasible within the language.

CD FO SFO EN SEN ∧C ∧BC ∨C ∨BC ¬C

renH[∨,∃]
√ √ √

◦ ◦ ◦ ◦
√ √

◦
K/H[∨,∃]

√ √ √
◦

√
◦ ◦

√ √
◦

HORN[∨,∃]
√ √ √

◦
√

◦
√ √ √

◦
AFF[∨]

√ √ √
◦

√
◦

√ √ √
◦

renH[∨]
√

•
√

◦ ◦ ◦ ◦
√ √

◦
K/H[∨]

√
•

√
◦

√
◦ ◦

√ √
•

HORN[∨]
√

•
√

◦
√

◦
√ √ √

•
KROM[∨]

√ √ √
◦

√
◦

√ √ √
•

renH[∃]
√ √ √ √ √

! ! ! ! !
K/H[∃]

√ √ √ √ √
! ! ! ! !

HORN[∃]
√ √ √ √ √ √ √

! ! !
AFF

√ √ √ √ √ √ √
! ! !

renH
√

•
√ √ √

! ! ! ! !
K/H

√
•

√ √ √
! ! ! ! !

HORN
√

•
√ √ √ √ √

! ! !
KROM

√ √ √ √ √ √ √
! ! !

5.2. Expressiveness

It is well-known that none of the languages KROM, HORN, K/H, renH, or AFF is complete for propositional logic. For 
instance, there is no formula from any of these languages which is equivalent to the CNF formula (x ∨ y ∨ z) ∧ (¬x ∨
¬y ∨ ¬z). This is problematic for many applications; indeed, what can be done when the available information cannot be 
represented in the targeted language? Approximating it is not always an option, especially because the best approximation 
of the available information can be rough and the missing pieces of information in the approximation can be crucial ones 
for reasoning and/or decision making. In the following, we are going to prove that while considering the existential closure 
of any of those languages does not increase its expressiveness, switching to its disjunction closure (or to its full disjunctive 
closure) is enough to recover a complete propositional language, thus escaping from the above mentioned expressiveness 
problem.

Let us start with the existential closures of KROM, HORN, K/H, renH, and AFF. First, since KROM (resp. AFF) is 
polynomially equivalent to KROM[∃] (resp. AFF[∃]), it turns out that those languages are (pairwise) equally expressive: 
KROM[∃] ∼e KROM, and AFF[∃] ∼e AFF. Similarly, we have derived the following expressiveness results, showing that the 
existential closure of any language L among HORN, K/H, and renH is not more expressive than L itself.

Proposition 7.

• HORN[∃] ∼e HORN.

• K/H[∃] ∼e K/H.

• renH[∃] ∼e renH.

Now, from the definitions of KROM, HORN, K/H, renH, the fact that K/H ≥p renH, and the fact that x ∨ y is a KROM
formula, which is not equivalent to a HORN one, ¬x ∨ ¬y ∨ ¬z is a HORN formula which is not equivalent to a KROM one, 
x ∨ y ∨ z is a renH formula which is not equivalent to a K/H one, we easily get that:

KROM£e HORN and HORN£e KROM

renH<e K/H<e HORN

K/H<e KROM

In addition, AFF and any of KROM, HORN, K/H, renH are incomparable w.r.t. ≤e . Indeed, there is no renH formula 
equivalent to the AFF formula x ⊕ y ⊕ z. This comes from the fact that every CNF formula equivalent to x ⊕ y ⊕ z must 
contain the four clauses x ∨ y ∨ z, ¬x ∨ ¬y ∨ z, x ∨ ¬y ∨ ¬z, ¬x ∨ y ∨ ¬z since those clauses are essential prime implicates 
of x ⊕ y ⊕ z, plus the fact that by construction, every CNF formula containing the clauses x ∨ y ∨ z, ¬x ∨¬y ∨ z, x ∨¬y ∨¬z, 
¬x ∨ y ∨¬z is not renamable Horn (renaming at least two variables in the first clause to make it a Horn clause also changes 
one of the remaining three clauses into a non-Horn one). Conversely, there is no AFF formula equivalent to ¬x ∨¬y, which 
is both in KROM and in HORN. This is a direct consequence of the semantical characterization result concerning AFF recalled 
in Section 2.3: with x < y, ω1 = 00, ω2 = 01, and ω3 = 10 are models of ¬x ∨ ¬y, but ⊕(ω1, ω2, ω3) = 11 is not a model 
of ¬x ∨ ¬y.



Fig. 5. The expressiveness picture for disjunctive closures. An arrow from L1 to L2 means that L1 is strictly more expressive than L2 , so that a lack of 
arrow means that the expressiveness of L1 and the expressiveness of L2 are incomparable.

Fig. 6. The succinctness picture for incomplete languages. An arrow from L1 to L2 means that L1 is strictly more succinct than L2 , i.e., L1 <s L2 . The 
arrow is thick in the specific case when the fact that L2 £s L1 comes from the fact that L2 £e L1 . A lack of arrow means that the succinctness of L1

and the succinctness of L2 are incomparable.

Let us finally switch to the disjunction closures and the full disjunctive closures of KROM, HORN, K/H, renH, or AFF; 
interestingly, the eight languages defined as such are equally, and fully, expressive:

Proposition 8. KROM[∨], HORN[∨], K/H[∨], renH[∨], AFF[∨], HORN[∨, ∃], K/H[∨, ∃], renH[∨, ∃] are complete propositional 
languages.

Fig. 5 depicts the expressiveness relationships identified in the above propositions.

5.3. Succinctness

As to incomplete languages, since KROM (resp. AFF) is polynomially equivalent to KROM[∃] (resp. AFF[∃]), those lan-
guages are (pairwise) equally succinct: KROM[∃] ∼s KROM, and AFF[∃] ∼s AFF. More interestingly, we have obtained the 
following succinctness results, showing that the existential closure of any language L among HORN, K/H, and renH is 
strictly more succinct than L itself.

Proposition 9.

• HORN[∃] <s HORN.

• K/H[∃] <s K/H.

• renH[∃] <s renH.

• renH and K/H[∃] are incomparable w.r.t. ≤s .

• K/H and HORN[∃] are incomparable w.r.t. ≤s .

Fig. 6 summarizes the succinctness relationships among incomplete languages identified in Proposition 9. We observe 
that it does not coincide with the corresponding expressiveness picture, restricted to incomplete languages (see Fig. 5).



Table 3

The relative succinctness of the full disjunctive closures of KROM, HORN, AFF, K/H, 
and renH.

AFF[∨] renH[∨,∃] K/H[∨,∃] HORN[∨,∃] KROM[∨]
AFF[∨] ∼s £s £s £s £s

renH[∨,∃] £s ∼s ≤s ≤s ≤s

K/H[∨,∃] £s £s ∼s ≤s ≤s

HORN[∨,∃] £s £s £s ∼s £s

KROM[∨] £s £s £s £s ∼s

As to complete languages, our succinctness results mainly focus on the five languages KROM[∨], HORN[∨, ∃], K/H[∨, ∃], 
renH[∨, ∃], AFF[∨], the full disjunctive closures of the incomplete languages KROM, HORN, K/H, renH, AFF considered at 
start.6

There are several reasons for this focus:

• KROM[∨], HORN[∨, ∃], K/H[∨, ∃], renH[∨, ∃], AFF[∨] are complete languages, while KROM, HORN, K/H, renH, AFF and 
their existential closures are not (see Proposition 7 and Proposition 8 above).

• HORN[∨, ∃], K/H[∨, ∃], renH[∨, ∃] satisfy the same queries as the corresponding disjunction closures, namely HORN[∨], 
K/H[∨], renH[∨] (see Proposition 5), and more transformations than them (see Proposition 6), since they offer FO “for 
free”.

• due to the obvious inclusion HORN[∨] ⊆ HORN[∨, ∃], we have that HORN[∨, ∃] is at least as succinct as HORN[∨]; and 
similarly for K/H[∨, ∃] and renH[∨, ∃].

Actually, we can strengthen this point by proving that the full disjunctive closure of HORN (resp. K/H, renH) is strictly 
more succinct than the corresponding disjunction closure:

Proposition 10.

• HORN[∨, ∃] <s HORN[∨].
• K/H[∨, ∃] <s K/H[∨].
• renH[∨, ∃] <s renH[∨].

Thus, the full disjunctive closures of the incomplete languages KROM, HORN, K/H, renH, AFF are either equally succinct 
as the corresponding disjunction closures (this is the case for the closures of KROM and of AFF), or strictly more succinct 
than them (for the three remaining languages).

Let us now provide the remaining succinctness results we got. We split our results into two propositions (and two 
tables). In the first table, we compare KROM[∨], HORN[∨, ∃], K/H[∨, ∃], renH[∨, ∃], AFF[∨] w.r.t. spatial efficiency ≤s .

Proposition 11. The results in Table 3 hold.

As a direct consequence of Proposition 11, we have that

renH[∨,∃] <s K/H[∨,∃] <s HORN[∨,∃]

K/H[∨,∃] <s KROM[∨,∃]

One can observe that the resulting succinctness picture is similar to the expressiveness picture for the corresponding 
incomplete fragments AFF, renH, K/H, HORN, KROM.

In Proposition 12, we compare w.r.t. ≤s the languages KROM[∨], HORN[∨, ∃], K/H[∨, ∃], renH[∨, ∃] and AFF[∨] with 
several classes of propositional representations for KC which have been introduced so far, and with CNF. We specifically 
focus on those target classes for which compilers have been developed, i.e., PI, IP, DNF, OBDD< , d-DNNF, and DNNFT .

Proposition 12. The results in Table 4 hold.

Fig. 7 depicts the succinctness relationships reported mainly in Proposition 11 and Proposition 12. The closure languages 
considered in this paper are underlined.

6 Remember that KROM[∨, ∃] ∼p KROM[∨] and that AFF[∨, ∃] ∼p AFF[∨], see Proposition 4.



Table 4

Comparing w.r.t. succinctness the full disjunctive closures of KROM, HORN, K/H, 
renH, and AFF, with OBDD< , IP, DNF, d-DNNF, DNNFT , PI, and CNF. ∗ means 
that the result holds unless the polynomial hierarchy collapses.

AFF[∨] renH[∨,∃] K/H[∨,∃] HORN[∨,∃] KROM[∨,∃]
CNF £s , ¤s £s , ¤s £s , ¤s £s , ¤s £s , ¤s

PI £s , ¤s £s , ¤s £s , ¤s £s , ¤s £s , ¤s

DNNFT £s , ¤s £s , ¤s £s , ¤s £s , ¤s £s , ¤s

d-DNNF £∗
s , ¤s £∗

s , ¤s £∗
s , ¤s £∗

s , ¤s £∗
s , ¤s

DNF £s , ≥s £s , ≥s £s , ≥s £s , ≥s £s , ≥s

IP £s , ≥s £s , ≥s £s , ≥s £s , ≥s £s , ≥s

OBDD< £s , ¤s £s , ¤s £s , ¤s £s , ¤s £s , ¤s

Fig. 7. The succinctness picture for complete classes. An arrow from L1 to L2 means that L1 is strictly more succinct than L2 , so that a lack of arrow 
means that the succinctness of L1 and the succinctness of L2 are incomparable for sure (or, under the assumption that the polynomial hierarchy does 
not collapse when d-DNNF is concerned). For a clarity sake, there are two exceptions to this notation, which also concern d-DNNF: it is unknown whether 
d-DNNF≤s PI, and whether d-DNNF≤s IP [1].

5.4. Discussion

Let us now compare in more details the five languages KROM, HORN, K/H, renH, and AFF, with their closures and with 
other classes of propositional representations considered so far for knowledge compilation.

We start with the existential closures. Since applying the existential closure principle to any of KROM, HORN, K/H, renH, 
and AFF does not change its expressiveness, the existential closures of KROM, HORN, K/H, renH, and AFF are incomplete 
languages as well. KROM[∃] (resp. AFF[∃]) is polynomially equivalent to KROM (resp. AFF) since KROM and AFF satisfy FO. 
As a consequence, KROM[∃] and AFF[∃] satisfy the same queries and transformations as their underlying language, and 
KROM[∃] and AFF[∃] are equally succinct as KROM and AFF, respectively. For the remaining existential closures (namely, 
HORN[∃], K/H[∃], renH[∃]), all the transformations already offered by HORN, K/H, renH, are preserved and FO is obtained 
“for free”. However, some queries offered by HORN, K/H, and renH (EQ, SE) are not preserved. This seems to be the price 
to be paid for the gain in succinctness the existential closures offer. Indeed, we have HORN[∃] <s HORN, K/H[∃] <s K/H, and 
renH[∃] <s renH. Thus, for applications where their expressiveness proves enough and EQ and SE are not expected but FO
is, renH[∃] (resp. HORN[∃]) appears as a better choice than renH (resp. HORN) as a target language for KC.

Unlike existential closures, the disjunction closures and the full disjunctive closures of KROM, HORN, K/H, renH, and 
AFF are complete propositional languages, i.e., fully expressive ones. Furthermore, switching from any of KROM, HORN, K/H, 
renH, or AFF to its disjunction closure or its full disjunctive closure leads to get ∨C (hence ∨BC) “for free” and FO, when 
it was not already offered. Conversely, some queries and transformations primarily offered are then lost; as to queries, this 
is the case for VA, IM, EQ, SE for the five languages, plus CT satisfied by AFF but not by any of its disjunction closure or 
its full disjunctive closure; as to transformations, this is the case for EN and ∧C (and even SEN, which is satisfied by renH
but not satisfied by renH[∨] or renH[∨, ∃], unless P = NP). Just like considering the existential closures of HORN, K/H, 
renH leads to strictly more succinct languages, considering the existential closures of HORN[∨], K/H[∨], renH[∨] leads as 



well to strictly more succinct languages since HORN[∨, ∃] <s HORN[∨], K/H[∨, ∃] <s K/H[∨], and renH[∨, ∃] <s renH[∨]. 
Thus, it turns out that the full disjunctive closures of KROM, HORN, K/H, renH, and AFF are always at least as interesting as the 
corresponding disjunction closures from a KC perspective: as to KROM and AFF, those closures are polynomially equivalent, 
hence equally interesting; as to HORN, K/H, renH, both closures satisfy the same queries, while each full disjunctive closure 
offers FO (not satisfied by the corresponding disjunction closure) and is strictly more succinct than the underlying language.

Comparing now one another the full disjunctive closures of KROM, HORN, K/H, renH, AFF it turns out that none of them 
is strictly dominated by another one from the KC point of view. All of them are equally expressive, and they satisfy precisely 
the same queries CO, CE, ME, MC. As to transformations, KROM[∨], HORN[∨, ∃], and AFF[∨] satisfy CD, FO, SFO, SEN, ∧BC, 
∨C and ∨BC. They are pairwise incomparable w.r.t. succinctness. While K/H[∨, ∃] is strictly more succinct than each of 
KROM[∨], or HORN[∨, ∃], it does not offer SEN, and while renH[∨, ∃] is strictly more succinct than K/H[∨, ∃], it does not 
offer ∧BC.

Finally, it is interesting to compare the full disjunctive closures of KROM, HORN, K/H, renH, AFF, with previous complete 
classes of representations for propositional logic, which have been considered as target classes for KC. One focuses on IP, 
DNF, PI, OBDD< , DNNFT , and d-DNNF:

• IP satisfies all the queries but CT, and no transformation but CD, EN, SEN and ∧BC. Hence each of the full disjunctive 
closures of KROM, HORN, AFF satisfies less queries than IP but they are incomparable w.r.t. transformations. Further-
more, IP is strictly less succinct than any of the full disjunctive closures of KROM, HORN, K/H, renH, AFF.

• DNF satisfies the same queries as any of the full disjunctive closures of KROM, HORN, K/H, renH, AFF, and the same 
transformations as KROM[∨], HORN[∨, ∃], and AFF[∨]. Since it is strictly less succinct than any of the full disjunctive 
closures of KROM, HORN, K/H, renH, AFF, it appears as dominated by KROM[∨], HORN[∨, ∃], and AFF[∨].

• PI satisfies all the queries but CT, and the transformations CD, FO, SFO, ∨BC. Hence, any of the full disjunctive clo-
sures of KROM, HORN, K/H, renH, AFF satisfies more transformations than PI. In addition, PI is incomparable w.r.t. 
succinctness with any of them.

• OBDD< satisfies all the queries and the transformations CD, SFO, SEN, ∧BC, ∨BC, and ¬C. Hence it offers more queries 
than the full disjunctive closures of KROM, HORN, K/H, renH, AFF, but it is incomparable with any of them when 
transformations are considered. OBDD< is also incomparable w.r.t. succinctness with any of the full disjunctive closures 
of KROM, HORN, K/H, renH, AFF.

• DNNFT satisfies the same queries as any of the full disjunctive closures of KROM, HORN, K/H, renH, AFF, and the same 
transformations as KROM[∨], HORN[∨, ∃], and AFF[∨]. It is incomparable w.r.t. succinctness with any of them.

• d-DNNF satisfies all the queries but SE, and it is unknown whether it offers EQ. As to transformations, it offers only CD
(it is unknown whether it satisfies EN, SEN, or ¬C, but it is known that it does not satisfy the other transformations). 
Thus, the full disjunctive closures of KROM, HORN, K/H, renH, AFF satisfy less queries than d-DNNF but offer additional 
transformations. Furthermore, d-DNNF is incomparable w.r.t. succinctness with any of the full disjunctive closures of 
KROM, HORN, K/H, renH, AFF (unless the polynomial hierarchy collapses).

Thus, none of the full disjunctive closures of KROM, HORN, K/H, renH, and AFF is strictly dominated by any of IP, DNF, 
PI, OBDD< , DNNFT , and d-DNNF, viewing the set of queries, the set of transformations and the succinctness relation as 
comparison criteria.

6. Conclusion and perspectives

6.1. Conclusion

In the light of the results reported in the previous sections, the following conclusions can be drawn.

Generally speaking, the disjunctive closures of classes L of propositional representations appear as interesting target 
classes for KC when the application under consideration expects tractability for the queries and transformations CO, CD and 
their consequences (e.g., CE, ME), as well as FO and/or ∨C (depending on the type of closure which is considered). Especially, 
as soon as L is stable by uniform renaming, the transformations FO, ∨C are offered “for free” by the full disjunctive closure 
L[∨, ∃] (even if the underlying class L does not offer any of them), while CO, CD are preserved by the closure. The other 
queries and transformations considered in the KC map are not guaranteed to be offered or to survive a disjunctive closure 
operation in the general case.

Considering specific disjunctive closures may allow for preserving additional queries or transformations, and for increas-
ing the expressiveness of the underlying language. Thus, the disjunction closure and the full disjunctive closure of any 
language L containing TERM are complete propositional languages, even if L is not (KROM, HORN, K/H, renH, and AFF are 
such languages). Clearly enough, fully expressive propositional languages are highly expected by many applications.

Of course, it cannot be guaranteed in the general case that the size of a compiled form remains “small enough” when a 
disjunctive closure is targeted. Nevertheless, every disjunctive closure of a class L includes L as a subset, hence applying 
a disjunctive closure principle to a class L decreases neither the expressiveness nor the succinctness of L. Actually, apply-
ing any/both of those two principles may lead to new classes, which can prove strictly more expressive and strictly more 
succinct than the underlying class L. Thus, each of the disjunction closure and the full disjunctive closure of any of KROM, 
HORN, K/H, renH, and AFF is strictly more expressive than the underlying language. Furthermore, the full disjunctive clo-



sure HORN[∨, ∃] (resp. K/H[∨, ∃], renH[∨, ∃]) is strictly more succinct than the corresponding disjunction closure HORN[∨]
(resp. K/H[∨], renH[∨]).

Now, from the application point of view, there are many important problems in AI and in other fields of Computer 
Science, where one is interested in encoding some pieces of information using representations for which CO, CD, FO and 
ME are computationally easy.

For instance, in model-based diagnosis, it makes sense to compile the description of the system to be diagnosed (during 
an off-line phase) in order to be able to generate efficiently consistency-based diagnoses, for a number of observations 
available on-line only [33,41,42]. Such diagnoses are the models of the system description, once conditioned by the given 
observation and then projected onto the variables expressing the components statuses (in the simplest case, faulty or not). 
Accordingly, if the system description has been compiled first into a representation which satisfies CO, CD, FO and ME, 
then the diagnoses can be computed in input-output polynomial time. Our results thus show full disjunctive closures of 
languages L satisfying the stability by uniform renaming condition as valuable target languages for the compilation, as soon 
as L satisfies CO and CD (which is the case for KROM, HORN, K/H, renH, and AFF).

In product configuration and interactive recommendation, it is also important to offer some response-time guarantees 
to the front-end user, especially when the interaction is Web-based. In order to achieve this goal, an approach consists 
in compiling the product catalog into a propositional representation (the models of it representing the feasible products). 
Among the operations required by the configuration process are propagating the user’s choices (the CD transformation), 
testing whether at least one feasible product is compatible with the user’s choices (the CO query), and listing a fixed number 
of feasible products compatible with the user’s choices (see e.g. [43,44]). Often, the feasible products are described using 
two types of variables (or “codes” [45]): the customer variables – the variables the user controls – and the manufacturer 
control variables – which express some information related to the factory or to the distribution of the product, and are not 
available to the user. Thus, the manufacturer control variables must be forgotten from the representation before listing the 
solutions. Our results show that those operations can be achieved efficiently when the catalog has been compiled into a 
full disjunctive closure of a class L of propositional representations, stable by uniform renaming, and satisfying CO and CD. 
In particular, the task of enumerating a preset number of solutions is feasible in polynomial time in this case (Algorithm 1

given in Appendix A is a polynomial delay enumeration procedure).
Beyond AI applications, enumerating models once projected on a given set of variables appears as a fundamental issue 

for a number of problems considered in software engineering and formal methods. Thus, in the setting of automatic case 
generation based on propositional logic, such models correspond to test cases [46]. The problem all-sat (or “all-solutions”
sat) which consists in enumerating the assignments to “important” variables of a propositional representation, which can 
be extended to models, turns out to be very significant in symbolic model checking [47], which explains that dedicated 
algorithms have been developed for solving it [48]. Indeed, this problem is considered for predicate abstraction [49], and 
re-parameterization in symbolic simulation [50]. In reachability analysis, one is interested in computing the set of states 
reachable from (resp. leading to) a given set of states under a transition relation; this is called the image (resp. pre-image) 
computation problem. The transition relation T can be modeled as a Boolean function T over X ∪ Y ∪ X ′ , complete terms γX

over X (resp. X ′) are used to denote states before (resp. after) a transition and complete terms γY over Y represent inputs 
making precise the transition. By construction, the models of ∃Y .T |γX (resp. ∃Y .T |γX ′ ) represent the image of γX (resp. 
the pre-image of γX ′ ) by T . The “important” variables are those of X ′ (resp. X). Accordingly, many sat solvers have been 
customized into all-sat solvers precisely for computing images or pre-images (see e.g. [51,52]) from CNF representations 
of transition relations. In practice, such sat-based approaches to symbolic model checking can prove much more efficient 
than OBDD<-based approaches on some instances, which coheres with the fact that the succinctness of OBDD< and the 
succinctness of CNF are incomparable [53]. Interestingly, when T is represented as a full disjunctive closure of a class L
of propositional representations, stable by uniform renaming, and satisfying CO and CD, both the computation of ∃Y .T |γX

(resp. ∃Y .T |γX ′ ) and the enumeration of its models can be achieved in polynomial time (in the size of the input plus the 
size of the output). Contrastingly, no response-time guarantee can be ensured in the general case for computing a single 
model when T is represented as a CNF formula.

Thus, for each of the applications above, considering full disjunctive closures for the representation purpose can prove to 
be a reasonable choice.

6.2. Perspectives

This work calls for several perspectives.
One of them concerns the problem of closed-world reasoning. Indeed, the disjunction covers of HORN and renH

are known as interesting target languages when propositional formulae are to be interpreted under some form of the 
closed-world assumption, like the extended closed-world assumption (ECWA) [54], the extended generalized closed-world 
assumption (EGCWA) [55], the generalized closed-world assumption (GCWA) [56] or the careful closed-world assumption 
(CCWA) [57]. To be more precise, though inference from a propositional formula interpreted under ECWA, EGCWA, GCWA 
or CCWA is Π p

2 -hard, its complexity is at most at the first level of the polynomial hierarchy when the formula belongs 
to HORN[∨] or to renH[∨] [58]. Furthermore, the complexity of inference under EGCWA falls down to P when HORN[∨]
formulae are considered, or when GCWA is considered and queries are limited to CNF formulae. Finally, it turns out that 
the complexity of closed-world reasoning is the same one for HORN[∨] formulae and for DNF formulae, despite the fact 



that DNF is strictly less succinct than HORN[∨]. It would be interesting to identify the complexity of closed-world reasoning 
for full disjunctive closures, especially those of HORN and renH.

Another important issue for further research is the design and the evaluation of compilers targeting the disjunctive clo-
sures introduced in the paper. Actually, compilers targeting some of those closures considered here do exist. Thus, Boufkhad 
et al. [6] present some compilation algorithms targeting KROM[∨], HORN[∨], K/H[∨], and renH[∨], and evaluate them on a 
number of benchmarks. While the obtained results show the feasibility of computing disjunction closure compilations, we 
can hardly use them to compare the practical significance of the corresponding closures with OBDD< and DNNFT for which 
some experimental results are also available. Indeed, the compilation algorithms given in [6] are based on an old-style DPLL
sat solver, and the performances of such solvers are dramatically overtaken by those of modern sat solvers, based on a 
CDCL architecture.

Interestingly, Nishimura et al. [59] have shown that the problem of determining whether a given CNF formula α has a 
strong KROM-backdoor set (resp. a strong HORN-backdoor set) containing at most k variables is fixed-parameter tractable 
with parameter k. Similarly, Samer and Szeider [60] have shown that the problem of determining whether a given CNF
formula α has a KROM-backdoor tree (resp. a HORN-backdoor tree) containing at most k leaves is fixed-parameter tractable 
with parameter k. The algorithm given in [60] can be used to determine “efficiently” (i.e., for sufficiently “small” k) whether a 
KROM[∨] compilation or a HORN[∨] compilation of “reasonable” size (i.e., linear in k and the size of α) exists. As mentioned 
in [60]: “There is some empirical evidence that real-world instances actually have small backdoor sets”. Such instances also have 
“small” HORN[∨] representations (hence, “small” K/H[∨] and “small” renH[∨] representations).7 This explains why it makes 
sense to develop new compilation algorithms targeting disjunction closures.

Incorporating existentially quantified variables in the representations during the compilation phase in order to generate 
full disjunctive closures also appears as an interesting perspective. Indeed, new variables can be introduced as “names” given 
to arbitrarily complex subformulae of the input formula (using equivalences); the point is that equivalence w.r.t. the input 
formula is preserved when such variables are existentially quantified. Taking advantage of it can dramatically reduce the 
size of the compiled forms (our succinctness results show that exponential gaps in the representation size can be achieved 
thanks to existential closure); the difficulty is to determine when introducing new variables (this is reminiscent to the 
general problem of lemmatization in automated reasoning).

Finally, the fact that each of KROM[∨], HORN[∨, ∃], and AFF[∨] satisfies ∧BC paves the way for bottom-up compilation 
algorithms for those classes. As noted in [18], this is important for applications from formal verification based on unbounded 
model checking which require bottom-up, incremental compilation of formulae, where pieces of information are compiled 
independently and then conjoined together. This explains why HORN[∨, ∃], and AFF[∨] which offers CD, FO, ∧BC, and 
ME appear as valuable candidates for the image/pre-image computation problem considered in reachability analysis, as 
discussed above. Indeed, OBDD< , which offers CD, FO, ∧BC, and ME as well, has been extensively used for the purpose 
of symbolic model checking [62]; furthermore, we have shown that the succinctness of HORN[∨, ∃], and of AFF[∨] are 
incomparable with the succinctness of OBDD< . Since each of KROM[∨], HORN[∨, ∃], and AFF[∨] satisfies CO and includes 
CLAUSE, getting ∧BC is optimal in the sense that no class of propositional representations containing CLAUSE can satisfy 
both ∧C and CO, unless P = NP.
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Appendix A. Proofs

Proposition 1. For every subset L, L′ of C-QDAG and every subset △1 , △2 of C ∪ {∃, ∀}, we have:

0. L ⊆L[△1], and if L ⊆L′ , then L[△1] ⊆L′[△1].
1. (L[△1])[△2] ⊆L[△1 ∪ △2].
2. (L[△1])[△1] =L[△1].
3. If △1 ⊆ △2 then L[△1] ⊆L[△2].
4. If △1 ⊆ △2 then (L[△1])[△2] =L[△2] and (L[△2])[△1] =L[△2].

Proof.

0. Obvious.

1. (L[△1])[△2] ⊆ L[△1 ∪ △2] is immediate from Definition 9; indeed, the construction of any representation from 
(L[△1])[△2] requires only representations from L[△1] and operators in △2; and the construction of any representation 
from L[△1] requires only representations from L and operators in △1 . Thus, if representations from L and operators 
in △1 ∪ △2 are available, then any representation from (L[△1])[△2] can be generated.

7 Note by the way that determining whether “small” renH[∨] representations which are not HORN[∨] representations exist can be computationally 
demanding since the detection of a strong renH-backdoor set is W[2]-hard [61].



2. (L[△1])[△1] = L[△1]: considering the inclusion reported at item 1. in this proof with △2 = △1 , we get (L[△1])[△1] ⊆
L[△1]; the converse inclusion L[△1] ⊆ (L[△1])[△1] follows from the inclusion at item 0. in this proof.

3. If △1 ⊆ △2 then L[△1] ⊆ L[△2]: the inclusion at item 0. in this proof shows that L[△1] ⊆ (L[△1])[△2], and item 1. in 
this proof shows that (L[△1])[△2] ⊆L[△1 ∪ △2]. The fact that L[△1 ∪ △2] is equal to L[△2] when △1 ⊆ △2 completes 
the proof.

4. Suppose that △1 ⊆ △2 . Then, from the equality reported at item 2. in this proof, since △1 ∪ △2 = △2 , we have 
(L[△1])[△2] ⊆ L[△2] and (L[△2])[△1] ⊆ L[△2]. Conversely, the inclusion at item 0. in this proof shows that L[△2] ⊆
(L[△2])[△1]; finally, L[△2] ⊆ (L[△1])[△2] derives from the fact that L ⊆ L[△1] (which is again ensured the inclusion 
at item 0. in this proof), and the implication reported at item 0. as well. ✷

Proposition 2. Let L be any subset of C-QDAG s.t. L is stable by uniform renaming. We have:

• (L[∃])[∨] ∼p (L[∨])[∃] ∼p L[∨, ∃].
• (L[∀])[∧] ∼p (L[∧])[∀] ∼p L[∧, ∀].

Proof. We just prove the first point of the proposition; the second one is similar (by duality). The facts that L[∨, ∃] ≤p

(L[∨])[∃] and L[∨, ∃] ≤p (L[∃])[∨] come immediately from the inclusions L[∨, ∃] ⊇ (L[∨])[∃] and L[∨, ∃] ⊇ (L[∃])[∨] (see 
item 1. in Proposition 1). It remains to show that L[∨, ∃] ≥p (L[∨])[∃] and L[∨, ∃] ≥p (L[∃])[∨].

• L[∨, ∃] ≥p (L[∨])[∃]. This comes from the possibility to turn in polynomial time any L[∨, ∃] representation into an 
equivalent, prenex, one while preserving the set of free variables. The proof is by structural induction. Let α be any 
representation from L[∨, ∃]:
– If α is an L representation, then it is also an (L[∨])[∃] representation due to the inclusion (L[∨])[∃] ⊇ L which 

comes from item 0. in Proposition 1.

– If α is not an L representation and α = ∨(β1, . . . , βn) with βi ∈ L[∨, ∃] for i ∈ 1, . . . , n, then by induction hypothe-
sis,8 one can compute in polynomial time n representations β ′

1, . . . , β
′
n ∈ (L[∨])[∃] such that for i ∈ 1, . . . , n, we have 

β ′
i ≡ βi . Hence, for i ∈ 1, . . . , n, we can compute in polynomial time Xi ⊆ PS and β ′′

i ∈L[∨] such that β ′
i ≡ ∃Xi .β

′′
i (es-

pecially, if β ′
i is an L[∨] representation, then we take Xi = ∅). For i ∈ 1, . . . , n, let X ′

i be a set of variables of PS which 
is disjoint with the set of variables occurring in α and such that there exists a bijection between X ′

i and Xi . One 
can always find such a bijection since each βi (i ∈ 1, . . . , n) belongs to L[∨, ∃], which is stable by uniform renaming 
since L is so. Furthermore, since PS is countably infinite, we can always find sets X ′

i so that for i, j ∈ 1, . . . , n, if i 6= j

then X ′
i ∩ X ′ j = ∅. Now, for i ∈ 1, . . . , n, let β ′′

i [Xi ← X ′
i] be the representation obtained by replacing in a uniform 

way in β ′′
i every occurrence of x ∈ Xi by the corresponding variable x′ ∈ X ′

i . Clearly enough, such representations can 
be computed in polynomial time. Since quantified variables are dummy ones, we have ∃Xi .β

′′
i ≡ ∃X ′

i .β
′′
i [Xi ← X ′

i]. 
Hence, we have α ≡ ∨(β ′

1, . . . , β
′
n) ≡ ∨(∃X1.β

′′
1 , . . . , ∃Xn.β

′′
n ) ≡ ∨(∃X ′

1.β
′′
1 [X1 ← X ′

1], . . . , ∃X
′
n.β

′′
n [Xn ← X ′

n]). Since 
for each i ∈ 1, . . . , n, we have Var(β ′′

i [Xi ← X ′
i]) ∩

⋃

j=1,...,n| j 6=i X
′
j = ∅, each ∃X ′

i .β
′′
i [Xi ← X ′

i] is equivalent to 

∃ 
⋃n

j=1 X ′
j .β

′′
i [Xi ← X ′

i]. Thus we get that α ≡ ∨(∃ 
⋃n

j=1 X ′
j .β

′′
1 [X1 ← X ′

1], . . . , ∃ 
⋃n

j=1 X ′
j .β

′′
n [Xn ← X ′

n]) ≡ ∃ 
⋃n

j=1 X ′
j . ∨

(β ′′
1 [X1 ← X ′

1], . . . , β
′′
n [Xn ← X ′

n]). Since ∨(β ′′
1 [X1 ← X ′

1], . . . , β
′′
n [Xn ← X ′

n]) is an L[∨] representation, the conclusion 
follows. Note that the set of free variables of α is preserved by the translation.

– If α is not an L representation and α = ∃x.β with β ∈ L[∨, ∃], then by induction hypothesis, one can compute 
in polynomial time a representation β ′ ∈ (L[∨])[∃] such that β ′ ≡ β . Since ∃x.β ′ is an (L[∨])[∃] representation 
equivalent to α, the conclusion follows. Again, the set of free variables of α is preserved by the translation.

• L[∨, ∃] ≥p (L[∃])[∨]. Again, the proof is by structural induction. Let α be any representation from L[∨, ∃]:
– If α is an L representation, then it is also an (L[∃])[∨] representation due to the inclusion (L[∃])[∨] ⊇ L which 

comes from item 0. in Proposition 1.

– If α = ∨(β1, . . . , βn) with βi ∈ L[∨, ∃] (i ∈ 1, . . . , n), then by induction hypothesis, one can compute in polynomial 
time n representations β ′

i ∈ (L[∃])[∨] (i ∈ 1, . . . , n) such that for each i ∈ 1, . . . , n, β ′
i ≡ βi . Since ∨(β ′

1, . . . , β
′
n) is an

(L[∃])[∨] representation equivalent to α, the conclusion follows.

– If α = ∃x.β with β ∈ L[∨, ∃], then by induction hypothesis, one can compute in polynomial time a representation 
β ′ ∈ (L[∃])[∨] such that β ′ ≡ β . If β ′ is an L[∃] representation, then ∃x.β ′ also is an L[∃] representation; since 
it is equivalent to α and since (L[∃])[∨] ⊇ L[∃] (see item 0. in Proposition 1), the conclusion follows. Otherwise 
we have β ′ = ∨(β ′

1, . . . , β
′
n) where β ′

i is an L[∃] representation (i ∈ 1, . . . , n). By replacement, α is equivalent to 
∃x. ∨ (β ′

1, . . . , β
′
n), which is equivalent to ∨((∃x.β ′

1), . . . , (∃x.β
′
n)). Since the latter representation is an (L[∃])[∨] rep-

resentation, the conclusion follows. ✷

Proposition 3. Let L be any subset of C-QDAG s.t. L is stable by uniform renaming.

• If L satisfies CO (resp. CD), then L[∨], L[∃] and L[∨, ∃] satisfy CO (resp. CD).
• If L satisfies CO and CD, then L satisfies CE and ME.

8 A key observation here is that all βi (i ∈ 1, . . . , n) are pairwise independent, i.e., they do not share any node and for i ∈ 1, . . . , n, every arc reaching a 
node of βi comes from a node of βi ; if this was not the case, such a proof by structural induction would not work.



Algorithm 1: enumerate(α, γ ).

input : an L representation α, and a set γ of literals over Var(α)

1 if α is consistent then

2 if Var(α) = ∅ then

3 write(γ )

4 else

5 x ← first(Var(α))

6 enumerate(α|x, γ ∪ {x})
7 enumerate(α|¬x, γ ∪ {¬x})

• If L satisfies CO and CD, then L, L[∨], L[∃] and L[∨, ∃] satisfy MC.

• L[∨] and L[∨, ∃] satisfy ∨C (hence ∨BC) and L[∃] and L[∨, ∃] satisfy FO (hence SFO).
• If L satisfies FO (resp. SFO), then L[∨] satisfies FO (resp. SFO).
• If L satisfies ∧C (resp. ∧BC, ∨C, ∨BC), then L[∃] satisfies ∧C (resp. ∧BC, ∨C, ∨BC).

Proof.

• As to CO, since L[∨] ⊆ L[∨, ∃] and L[∃] ⊆ L[∨, ∃], it is enough to show that L[∨, ∃] satisfies CO. Let α be any repre-
sentation from L[∨, ∃]; since L[∨, ∃] ∼p (L[∨])[∃] (cf. Proposition 2), we can compute in time polynomial in the size 
of α an equivalent representation β = ∃X . ∨ (β1, . . . , βn) where X is a finite subset of PS and each βi (i ∈ 1, . . . , n) is 
an L representation. We have that α is consistent iff β is consistent iff ∨(β1, . . . , βn) is consistent iff at least one βi

(i ∈ 1, . . . , n) is consistent. Since the latter can be decided in polynomial time, the conclusion follows.

As to CD, let γ be any consistent term. Let α be an L[∨] representation; we have α = ∨(β1, . . . , βn) where each βi

(i ∈ 1, . . . , n) is an L representation. Since ∧ distributes over ∨ and existential quantifications “distribute” over ∨ as 
well, we have ∃Var(γ ).(α ∧ γ ) ≡ ∃Var(γ ).(∨(β1, . . . , βn) ∧ γ ) ≡ ∃Var(γ ). ∨ (β1 ∧ γ , . . . , βn ∧ γ ) ≡ ∨(∃Var(γ ).(β1 ∧ γ ),

. . . , ∃Var(γ ).(βn ∧ γ )). If L satisfies CD, then each ∃Var(γ ).(βi ∧ γ ) (i ∈ 1, . . . , n) can be associated in polynomial time 
with an equivalent L representation β ′

i . Hence ∃Var(γ ).(α ∧ γ ) is equivalent to the L[∨] representation ∨(β ′
1, . . . , β

′
n)

which can be computed in time polynomial in the size of the input. Now let α be an L[∃] representation; we have 
α = ∃X .β where X is a finite subset of PS and β is an L representation.

We have ∃Var(γ ).(α ∧ γ ) ≡ ∃Var(γ [X ← X ′]).((∃X .β) ∧ γ [X ← X ′]) where γ [X ← X ′] is the representation obtained 
by replacing in γ every variable x ∈ Var(γ ) ∩ X by a fresh variable x′ , not occurring in β or γ . Since Var(γ [X ← X ′]) ∩
X = ∅, we have that ∃Var(γ [X ← X ′]).((∃X .β) ∧γ [X ← X ′]) ≡ ∃Var(γ [X ← X ′]) ∪ X .(β∧γ [X ← X ′]) ≡ ∃X .(∃Var(γ [X ←
X ′]).(β ∧ γ [X ← X ′])). If L satisfies CD, then ∃Var(γ [X ← X ′]).(β ∧ γ [X ← X ′]) can be associated in polynomial 
time with an equivalent L representation β ′ . Hence ∃Var(γ ).(α ∧ γ ) is equivalent to the L[∃] representation ∃X .β ′

which can be computed in time polynomial in the size of the input. Finally, let α be an L[∨, ∃] representation; since 
L[∨, ∃] ∼p (L[∨])[∃] (cf. Proposition 2), we can compute in time polynomial in the size of α an equivalent representa-
tion β = ∃X . ∨ (β1, . . . , βn) where X is a finite subset of PS and each βi (i ∈ 1, . . . , n) is an L representation. Then it is 
enough to combine the two previous proofs to get the desired result.

• We generalize some easy lemmata from [1] to the C-QDAG case. As to CE, it is enough to observe that for any C-QDAG
representation α and any non-valid clause δ, we have α |H δ iff α ∧ ¬δ is inconsistent iff ∃Var(¬δ).(α ∧ ¬δ) is inconsis-
tent.

As to ME, let α be any L representation. Procedure 1 enumerates the models of α over Var(α). It amounts to searching 
a decision tree T in a depth-first manner. Each branch of T corresponds either to a model of α over Var(α), or to an 
implicant of ¬α. Each model is represented as a set of literals over Var(α). The procedure is called with γ = ∅. Given a 
total, strict ordering over the variables of Var(α), the function first(α) at Line 4 returns the first variable of α w.r.t. this 
ordering.

Procedure 1 first consists in testing whether α is consistent (Line 1). If α is inconsistent, then the procedure stops; 
otherwise, one checks whether Var(α) is empty or not (Line 2). If this set is empty, then one returns the model of α
stored in the accumulator γ (Line 3). In the remaining case, one computes the first variable x of α (Line 5). Afterwards, 
the procedure enumerates recursively all the models of α|x by adding x to the accumulator γ (Line 6), then all the 
models of α|¬x by adding ¬x to the accumulator γ (Line 7). In both cases, a variable is removed (since x /∈ Var(α|x) ∪
Var(α|¬x)), hence the number of recursive calls for each branch of T cannot exceed the number of variables of α. 
Furthermore, since L satisfies CO and CD, the time spent between two successive calls is polynomial in the input size.
Procedure 1 is thus a polynomial delay model enumeration algorithm: a first model of α (when it exists) is generated 
in time polynomial in the size of the input, and after each model generation, the time needed to generate a further 
model (or to determine that no more models exist) also is polynomial in the size of the input. As a consequence, it 
runs in time polynomial in the size of the input plus the size of the output.

• Due to the inclusions L ⊆ L[∨], L ⊆L[∃] ⊆L[∨, ∃] (see Proposition 1), it is enough to show that L[∨, ∃] satisfies MC. 
Let α be any L[∨, ∃] representation. Since L[∨, ∃] ∼p (L[∨])[∃] (cf. Proposition 2), we can compute in time polynomial 
in the size of α an equivalent representation β = ∃X . ∨ (β1, . . . , βn) where X is a finite subset of PS and each βi

(i ∈ 1, . . . , n) is an L representation. Furthermore, we have Var(β) = Var(α). Let ω be any interpretation over Var(α)



and let γ be the consistent term (unique up to logical equivalence) such that Var(γ ) = Var(α) and ω is a model of γ . 
We have ω |H α iff γ ∧ β is consistent iff γ ∧ ∨(β1, . . . , βn) is consistent iff there exists i ∈ 1, . . . , n such that γ ∧ βi

is consistent iff there exists i ∈ 1, . . . , n such that ∃Var(γ ).(βi ∧ γ ) is consistent. Since L satisfies CO and CD, the 
conclusion follows.

• The fact that L[∨] and L[∨, ∃] satisfy ∨C and L[∃] and L[∨, ∃] satisfy FO is obvious (by construction).
• We prove the FO case (for SFO just take X as a singleton). Let α be a representation from L[∨] and X ⊆ PS. By 

construction, α = ∨(β1, . . . , βn) where each βi (i ∈ 1, . . . , n) is an L representation. Since existential quantifications 
“distribute” over ∨, we have ∃X .α ≡ ∨(∃X .β1, . . . , ∃X .βn). Now, since L satisfies FO, with each ∃X .βi (i ∈ 1, . . . , n) we 
can associate in polynomial time an equivalent L representation β ′

i . Applying the replacement metatheorem,9 we get 
that ∃X .α ≡ ∨(β ′

1, . . . , β
′
n). Since the L[∨] representation ∨(β ′

1, . . . , β
′
n) can be computed in polynomial time in the size 

of α plus the size of X , the conclusion follows.

• We prove the ∧C case. Let us consider n representations α1, ..., αn from L[∃] where L satisfies ∧C. By construc-
tion, for each i ∈ 1, . . . , n, αi is of the form ∃Xi .βi where Xi is a finite subset of PS and βi ∈ L. With each ∃Xi .βi

we can associate in polynomial time the equivalent representation ∃X i
i .βi[Xi ← X i

i ] obtained by renaming in a uni-

form way every occurrence of variable x ∈ Xi by the fresh variable xi . Whenever βi belongs to L, βi[Xi ← X i
i ]

belongs to L as well (due to the stability condition). From the replacement metatheorem, we get that 
∧n

i=1 αi ≡
∧n

i=1(∃Xi .βi) ≡
∧n

i=1(∃X i
i .βi[Xi ← X i

i ]). By construction, we have X i
i ∩ X

j
j = ∅ when i 6= j. As a consequence, we have 

∧n
i=1(∃X i

i .βi[Xi ← X i
i ]) ≡ ∃ 

⋃n
i=1 X i

i .(
∧n

i=1 βi[Xi ← X i
i ]) Since L satisfies ∧C, we can turn in polynomial time the repre-

sentation 
∧n

i=1 βi[Xi ← X i
i ] into an equivalent representation β from L. Since 

∧n
i=1 αi ≡ ∃ 

⋃n
i=1 X i

i .β and 
⋃n

i=1 X i
i .β is 

an L[∃] representation, the conclusion follows. The proof is similar for the remaining cases (∧BC, ∨C, ∨BC). ✷

Proposition 4.

• KROM∼p KROM[∃].
• KROM[∨] ∼p KROM[∨, ∃].
• AFF∼p AFF[∃].
• AFF[∨] ∼p AFF[∨, ∃].

Proof. These polynomial equivalences come easily from the fact that each of KROM and AFF satisfies FO (cf. Proposition 6), 
plus the fact that existential quantifications “distribute” over disjunctions. ✷

Proposition 5. The results in Table 1 hold.

CO VA CE IM EQ SE CT ME MC

renH[∨,∃]
√

◦
√

◦ ◦ ◦ ◦
√ √

K/H[∨,∃]
√

◦
√

◦ ◦ ◦ ◦
√ √

HORN[∨,∃]
√

◦
√

◦ ◦ ◦ ◦
√ √

AFF[∨]
√

◦
√

◦ ◦ ◦ ◦
√ √

renH[∨]
√

◦
√

◦ ◦ ◦ ◦
√ √

K/H[∨]
√

◦
√

◦ ◦ ◦ ◦
√ √

HORN[∨]
√

◦
√

◦ ◦ ◦ ◦
√ √

KROM[∨]
√

◦
√

◦ ◦ ◦ ◦
√ √

renH[∃]
√ √ √ √

◦ ◦ ◦
√ √

K/H[∃]
√ √ √ √

◦ ◦ ◦
√ √

HORN[∃]
√ √ √ √

◦ ◦ ◦
√ √

AFF
√ √ √ √ √ √ √ √ √

renH
√ √ √ √ √ √

◦
√ √

K/H
√ √ √ √ √ √

◦
√ √

HORN
√ √ √ √ √ √

◦
√ √

KROM
√ √ √ √ √ √

◦
√ √

KROM, HORN, K/H, AFF, renH, their disjunction, existential and full dis-
junctive closures and the corresponding polynomial-time queries. 

√
means 

“satisfies” and ◦ means “does not satisfy unless P = NP.”

9 In classical propositional logic, this metatheorem states that if β is a subformula of a propositional formula α and β ′ is a formula equivalent to β , 
then the formula obtained by replacing in α the subformula β by β ′ is a formula equivalent to α [63] (this comes directly from the truth-functionality 
of the connectives); this metatheorem also holds for quantified formulae and can be generalized to the case of DAG-based representations (under some 
conditions); more precisely, given any node N of a C-QDAG representation α let βN be the subgraph of α given by the set SN of nodes of α reachable 
from N; if every arc of α having its extremity in SN \ {N} also has its origin in SN , then for every C-QDAG representation β ′ equivalent to β , the C-QDAG
representation obtained by removing in α every node and every arc of β , and redirecting the arcs entering N to the root of β ′ is a representation equivalent 
to α.



Proof.

CO It is well-known that each of KROM, HORN, renH, AFF satisfies CO (cf. [64–67,25]). Since deciding whether a C-QDAG
representation is in KROM (resp. HORN) can be done in polynomial time, we get that K/H satisfies CO. Then point 1. of 
Proposition 3 allows to conclude that each of the [∨], [∃], and [∨, ∃] closures of those languages satisfies CO as well.

VA KROM, HORN, K/H and renH satisfy VA since they are subsets of CNF and CNF satisfies VA. AFF satisfies VA since it 
satisfies CT (indeed, an AFF formula α is valid if and only if it has 2n models where n is the cardinality of Var(α)).

As to renH[∃], K/H[∃] and HORN[∃], the results hold since each of these languages satisfies IM. Obviously, every subset 
L of C-QDAG which satisfies IM satisfies VA as well (indeed, α ∈ L is valid iff it is implied by the term ⊤). Since the 
proof that each of renH[∃], K/H[∃] and HORN[∃] satisfies IM relies on the fact that HORN[∃] satisfies VA, it just remains 
to show it. This is easy since a formula α from HORN[∃] is valid if and only if its universal closure is valid. The fact 
that the validity problem for closed, prenex quantified Boolean formulae with a HORN matrix is in P [68] concludes the 
proof.

Finally, none of KROM[∨], HORN[∨], K/H[∨], renH[∨], AFF[∨], HORN[∨, ∃], K/H[∨, ∃], renH[∨, ∃] satisfies VA unless 
P = NP since each of those languages includes DNF as a subset and DNF does not satisfy VA unless P = NP.

CE, ME The results come directly from the second item of Proposition 3, given that each of the sixteen languages considered 
here satisfies both CO and CD.

IM As to KROM, HORN, K/H, renH, and AFF, the results come from the fact that if a subset of C-QDAG satisfies VA and 
CD, then it satisfies IM (this slightly extends Lemma A.7 from [1] to C-QDAG representations).

Consider now the case of renH[∃], K/H[∃] and HORN[∃]. Since each of K/H[∃] and HORN[∃] is polynomially translatable 
into renH[∃], it is enough to prove the result for renH[∃]. We first show that the implicant problem for renH[∃]
formulae can be reduced in polynomial time into the implicant problem for HORN[∃] formulae. Let ∃X .α be a renH[∃]
formula such that α is a renH formula, and let γ be a term. Let V be any Horn renaming for α. We have γ |H ∃X .α
iff γ ⇒ (∃X .α) is valid.
Now, viewing V as a substitution, one can take advantage of the substitution metatheorem for propositional logic. 
This theorem (see e.g., [63]) states that for any propositional formula Σ and any substitution σ (a mapping which 
replaces each variable by a formula), if Σ is valid, then σ (Σ) is valid. With Σ = γ ⇒ (∃X .α) and σ = V , we get 
that if γ ⇒ (∃X .α) is valid, then V (γ ⇒ (∃X .α)) is valid. Since for every formula β , V (V (β)) ≡ β , we also get that if 
V (γ ⇒ (∃X .α)) is valid, then γ ⇒ (∃X .α) is valid. Altogether, we get that γ ⇒ (∃X .α) is valid iff V (γ ⇒ (∃X .α)) is 
valid. Now, V (γ ⇒ (∃X .α)) is valid iff V (γ ) ⇒ V (∃X .α) is valid iff V (γ ) |H V (∃X .α).

Let ω be any interpretation over Var(α) ∪ X . Since for every variable x, V (x) is equal to x or is equal to ¬x, V (ω) can 
be viewed as well as an interpretation over Var(α) ∪ X . We have ω |H V (∃X .α) iff V (ω) |H ∃X .α (using the substitution 
theorem and the fact that for every formula β , V (V (β)) ≡ β) iff there exists an interpretation ω′ over Var(α) ∪ X such 
that ω′ |H α and ∀y ∈ (Var(α) ∪ X) \ X , V (ω)(y) = ω′(y) (by definition of ∃X .α) iff there exists an interpretation V (ω′)
over Var(α) ∪ X such that V (ω′) |H V (α) and ∀y ∈ (Var(α) ∪ X) \ X , V (V (ω))(y) = V (ω′)(y). Since V (V (ω)) = ω, this 
is equivalent to state that ω is a model of ∃X .V (α). As a consequence, we have V (∃X .α) ≡ ∃X .V (α).

Accordingly, γ is an implicant of the renH[∃] formula ∃X .α iff the term V (γ ) is an implicant of the HORN[∃] formula 
∃X .V (α). As explained above (see the VA point in the proof), the fact that HORN[∃] satisfies CD and VA shows that it 
satisfies IM as well. Given that a Horn renaming V for α can be computed in polynomial time given α, and that V (γ )

(resp. V (α)) can be computed in polynomial time from γ (resp. α) once V has been computed, the fact that HORN[∃]
satisfies IM shows that renH[∃] satisfies IM as well.

Finally, none of KROM[∨], HORN[∨], K/H[∨], renH[∨], AFF[∨], HORN[∨, ∃], K/H[∨, ∃], renH[∨, ∃] satisfies IM unless 
P = NP, since none of them satisfies VA unless P = NP.

SE Determining whether a KROM (resp. HORN, K/H, renH) formula β is a logical consequence of a KROM (resp. HORN, K/H, 
renH) formula α amounts to determining whether every clause of β is a logical consequence of α. The fact that each of 
KROM, HORN, K/H and renH satisfy CE completes the proof for those four languages. As to AFF, determining whether 
an AFF formula β is a logical consequence of an AFF formula α amounts to determining whether every XOR-clause of 
β is a logical consequence of α. Now, a XOR-clause l1 ⊕ . . . ⊕ ln is a logical consequence of an AFF formula α if and 
only if the AFF formula α ∧ (l1 ⊕ . . . ⊕ ln ⊕ ⊤) is inconsistent. The fact that AFF satisfies CO concludes the proof for 
AFF.

As to renH[∃], K/H[∃] and HORN[∃], it is enough to prove the result for HORN[∃] since this language is included in 
the two remaining ones. Let α be a CNF formula over n variables x1, . . . , xn . Let α′ be the HORN formula obtained by 
replacing every positive literal xi in α by the negative literal ¬x′

i (where each x′
i is a fresh variable), conjoined with n

additional clauses ¬xi ∨ ¬x′
i (i ∈ 1, . . . , n). Let β ′ be the KROM formula 

∧n
i=1(xi ∨ x′

i). By construction, α is inconsistent 
iff α′ ∧ β ′ is inconsistent iff α′ |H ¬β ′ . ¬β ′ is equivalent to 

∨n
i=1(¬xi ∧ ¬x′

i), which in turn is equivalent to the formula 
γ ′ = ∃{y1, . . . , yn}((¬y1 ∨ . . . ∨ ¬yn) ∧

∧n
i=1((yi ∨ ¬xi) ∧ (yi ∨ ¬x′

i))) (where each yi is a fresh variable). The fact that 
α′ and γ ′ are HORN[∃] formulae which can be computed in time polynomial in the size of α shows the coNP-hardness 
of the sentential entailment problem for HORN[∃] formulae and concludes the proof.
Finally, none of KROM[∨], HORN[∨], K/H[∨], renH[∨], AFF[∨], HORN[∨, ∃], K/H[∨, ∃], renH[∨, ∃] satisfies SE unless 
P = NP since none of them satisfies VA unless P = NP; the fact that ⊤ is a formula from each of these languages and 
that α ∈ C-QDAG is valid iff ⊤ |H α concludes the proof.



EQ Each of KROM, HORN, K/H, renH, and AFF satisfies EQ since it satisfies SE.
As to renH[∃], K/H[∃] and HORN[∃]: for every formulae α′ and γ ′ from C-QDAG we have that α′ |H γ ′ iff α′ ∧ γ ′ ≡ α′ . 
Consider now the formulae α′ and γ ′ used for proving that none of renH[∃], K/H[∃] and HORN[∃] satisfies SE unless 
P = NP (see the item SE in this proof). Since none of the yi variables occurs in α′ , the formula α′ ∧γ ′ can be turned in 
linear time into the equivalent formula ∃{y1, . . . , yn}.(α′ ∧ ((¬y1 ∨ . . . ∨ ¬yn) ∧

∧n
i=1((yi ∨ ¬xi) ∧ (yi ∨ ¬x′

i)))), which 
is a HORN[∃] formula. This concludes the proof.
Finally, none of KROM[∨], HORN[∨], K/H[∨], renH[∨], AFF[∨], HORN[∨, ∃], K/H[∨, ∃], renH[∨, ∃] satisfies EQ unless 
P = NP since none of them satisfies VA unless P = NP; the fact that ⊤ is a formula from each of these languages and 
that α ∈ C-QDAG is valid iff ⊤ ≡ α concludes the proof.

CT The result for AFF is proven in [69]. The results for all the remaining languages come from the fact that the language 
of negative Krom formulae (i.e., the set of all conjunctions of negative, binary clauses) is included into each language 
among KROM, HORN, K/H, renH, KROM[∨], HORN[∨], K/H[∨], renH[∨], HORN[∨, ∃], K/H[∨, ∃], renH[∨, ∃]; further-
more, DNF is included in AFF[∨] since each term is an AFF formula. The fact that none of the language of negative 
Krom formulae and DNF satisfies CT [70] concludes the proof.

MC The results come directly from the third item of Proposition 3, given that each of KROM, HORN, K/H, renH, and AFF
satisfies both CO and CD. ✷

Proposition 6. The results in Table 2 hold.

CD FO SFO EN SEN ∧C ∧BC ∨C ∨BC ¬C

renH[∨,∃]
√ √ √

◦ ◦ ◦ ◦
√ √

◦
K/H[∨,∃]

√ √ √
◦

√
◦ ◦

√ √
◦

HORN[∨,∃]
√ √ √

◦
√

◦
√ √ √

◦
AFF[∨]

√ √ √
◦

√
◦

√ √ √
◦

renH[∨]
√

•
√

◦ ◦ ◦ ◦
√ √

◦
K/H[∨]

√
•

√
◦

√
◦ ◦

√ √
•

HORN[∨]
√

•
√

◦
√

◦
√ √ √

•
KROM[∨]

√ √ √
◦

√
◦

√ √ √
•

renH[∃]
√ √ √ √ √

! ! ! ! !
K/H[∃]

√ √ √ √ √
! ! ! ! !

HORN[∃]
√ √ √ √ √ √ √

! ! !
AFF

√ √ √ √ √ √ √
! ! !

renH
√

•
√ √ √

! ! ! ! !
K/H

√
•

√ √ √
! ! ! ! !

HORN
√

•
√ √ √ √ √

! ! !
KROM

√ √ √ √ √ √ √
! ! !

KROM, HORN, K/H, AFF, renH, their disjunction, existential and full disjunctive closures 
and the corresponding polynomial-time transformations. 

√
means “satisfies,” • means 

“does not satisfy,” while ◦ means “does not satisfy unless P = NP.” ! means that the 
transformation is not always feasible within the language.

Proof.

CD When α is a CNF formula and γ is a term, a CNF formula β equivalent to α|γ can be computed in time polynomial 
in the size of α plus the size of γ by removing from α every clause containing a literal l from γ while removing 
the complementary literal l̄ from every clause of α containing it. Obviously enough, removing clauses and shortening 
clauses are two internal laws in the languages KROM and HORN. This shows that KROM, HORN and K/H satisfy CD. 
Similarly, when α is an AFF formula and γ is a term (viewed as a set of literals), an AFF formula β equivalent to 
α|γ can be computed in time polynomial in the size of α plus the size of γ by replacing in α every occurrence of a 

literal l by ⊤ when l belongs to γ and by ⊥ when l̄ belongs to γ . As to renH, it is not hard to see that if V is a Horn 
renaming for a renH formula α then for any term γ , V also is Horn renaming for the formula β as defined above. 
Hence renH also satisfies CD.
Then point 1. of Proposition 3 allows to conclude that each of the [∨], [∃], and [∨, ∃] closures of those languages 
satisfies CD as well.

FO Each of HORN[∃], K/H[∃], renH[∃], HORN[∨, ∃], K/H[∨, ∃], renH[∨, ∃] obviously satisfies FO since such a transforma-

tion can be done in an implicit way in each of those languages.
As to KROM, it is well-known that the set of prime implicates of a KROM formula α can be computed in time poly-
nomial in the size of α and that each such prime implicate is a binary clause (see [71]). Furthermore, the prime 
implicates of ∃X .α with X ⊆ PS are the prime implicates of α which do not contain any atom from X (Proposition 55 
in [71]), showing in particular that PI satisfies FO. Together, this shows that KROM satisfies FO.
The fact that AFF satisfies FO is given by Lemma 1 from [72].
Now, taking advantage of the fact that for any C-QDAG representation of the form ∨(α1, . . . , αn) and any finite subset 
X of PS ∃X . ∨ (α1, . . . , αn) is logically equivalent to ∨(∃X .α1, . . . , ∃X .αn), we get that each of KROM[∨] and AFF[∨]
satisfies FO.



It remains to consider the cases of HORN, K/H, renH and of their disjunction closures. Consider the HORN formula 
αn = (

∨n
i=1 ¬xi) ∧

∧n
i=1(xi ∨¬yi) ∧ (xi ∨¬zi) and the set Xn = {x1, . . . , xn} of atoms. Every clause of the form 

∨n
i=1 ¬li

where l is y or z is an essential prime implicate of ∃Xn.αn and there are 2n such clauses. This shows that ∃Xn.αn has 
only exponential size CNF representations. Thus HORN does not satisfy FO. Since αn also is a K/H formula and a renH
formula, we also get that none of K/H and renH satisfies FO.
Finally, the fact that HORN[∨] (resp. K/H[∨], renH[∨]) does not satisfy FO comes from the fact that HORN[∨, ∃] <s

HORN[∨] (resp. K/H[∨, ∃] <s K/H[∨], renH[∨, ∃] <s renH[∨]). Let us consider the HORN case (the other cases are 
similar): forgetting a set of variables X in a HORN[∨] formula α amounts to computing a HORN[∨] formula equiv-
alent to the HORN[∨][∃] formula ∃X .α. If HORN[∨] would satisfy FO, then every HORN[∨][∃] formula ∃X .α could 
be turned in polynomial time into an equivalent HORN[∨] formula. Since HORN[∨][∃] ∼p HORN[∨, ∃], we would have 
HORN[∨, ∃] ≥p HORN[∨]. But this conflicts with the fact that HORN[∨] £s HORN[∨, ∃] (in a nutshell, if no polynomial-

space translation exists, then no polynomial-time translation exists).
SFO Obviously, every language satisfying FO satisfies SFO as well. Hence it is enough to consider the cases of HORN, K/H, 

renH and of their disjunction closures.
Let us consider first the HORN and renH cases. For any CNF formula α (viewed as a set of clauses) and a propositional 
variable x ∈ PS, one can compute from α in polynomial time the following three sets of clauses α∗ , α+ , and α−: first 
remove from α every valid clause to get a set of clauses α′; now, compute α∗ as the set of clauses of α′ not containing 
x as a variable, α+ as the set of clauses of α′ containing x as a (positive) literal, from which x is removed, and compute 
α− as the set of clauses of α′ containing ¬x as a (negative) literal from which ¬x is removed. By construction, the 
conjunction β of clauses from α∗ ∪ {δ+ ∨ δ− | δ+ ∈ α+, δ− ∈ α−} is a CNF formula equivalent to (α | ¬x) ∨ (α | x), 
hence equivalent to ∃x.α. Since none of α+ and α− can contain more clauses or more literals than α, it comes that 
β can be computed in time polynomial in the size of α. It remains to show that if α is HORN (resp. renH) then 
the corresponding β is HORN (resp. renH). Assume that α is HORN. Then every clause from α∗ is a Horn clause; 
furthermore, by construction every clause δ+ ∈ α+ is a negative clause and every clause δ− ∈ α− is a Horn clause; 
hence, every clause of the form δ+ ∨ δ− is a Horn clause. Similarly, if α is renH and V is any Horn renaming for it, 
then V also is a Horn renaming for the corresponding β . Hence HORN and renH satisfy SFO.
Since both KROM and HORN satisfy SFO, K/H satisfies SFO as well.

Finally, given that for any C-QDAG representation α and any atom x ∈ PS, we have ∃x.α ≡ (∃x.(α ∧ ¬x) ∨ ∃x.(α ∧ x)), 
the results for HORN[∨], K/H[∨], and renH[∨] come that each of these languages satisfies CD and ∨BC.

EN For any C-QDAG representations α and β and any finite subset X of PS we have the equivalence ∀X .(α ∧ β) ≡
(∀X .α) ∧ (∀X .β). Furthermore, when δ is a clause, ∀X .δ is equivalent to the clause obtained by removing from δ every 
literal l such that var(l) ∈ X . Since removing literals from a KROM (resp. HORN) clause leads to a KROM (resp. HORN) 
clause, altogether we get that each of KROM and HORN satisfies EN, and this shows that K/H satisfies EN as well. Now, 
if α is a renH formula and V is a Horn renaming for it, then the formula obtained by removing in every clause of α
every literal built up from a variable of X still is a renH formula (indeed, V is still a Horn renaming for it). Hence, 
renH also satisfies EN. Let us consider now the case of an AFF formula α. We assume w.l.o.g. that α is simplified, 
i.e., for every XOR-clause δ = l1 ⊕ . . . ⊕ lk of α, either δ reduces to ⊥, or every literal in δ is positive or equal to ⊤ and 
δ does not contain more than one occurrence of any variable and of ⊤ (if this is not the case it is sufficient to exploit 
the equivalences ¬x ≡ x ⊕ ⊤, β ⊕ β ≡ ⊥, β ⊕ ⊥ ≡ β to render α simplified while preserving logical equivalence); it 
is easy to check that if α is a simplified AFF formula containing a variable from X , then ∀X .α is equivalent to ⊥, 
otherwise ∀X .δ is equivalent to α. Hence, AFF satisfies EN.
The fact that HORN[∃] satisfies EN is a consequence of Corollary 11 from [73]. Since KROM[∃] ∼p KROM and KROM
satisfies EN, as a consequence, we also have that K/H[∃] satisfies EN.

As to the case of renH[∃], let us consider a renH[∃] formula α = ∃X .β . Let V be a Horn renaming for β . Since 
HORN[∃] satisfies EN, for every finite subset Y of PS, the formula ∀Y .(∃X .V (β)) can be turned in polynomial time into 
an equivalent formula ∃Z .γ from HORN[∃]. From the substitution metatheorem, we have V (∀Y .(∃X .V (β))) ≡ V (∃Z .γ ). 
Hence, we have ∀Y .(∃X .V (V (β))) ≡ ∃Z .V (γ ). Since V (V (β)) = β , we get that ∀Y .(∃X .β) ≡ ∃Z .V (γ ). Clearly, ∃Z .V (γ )

is a renH[∃] formula; indeed, V (γ ) is a renH formula since V (V (γ )) = γ is a HORN formula. Since ∃Z .V (γ ) can be 
computed in polynomial time from ∀Y .(∃X .β), we get that renH[∃] satisfies EN.
Finally, for any C-QDAG representation α and any finite subset X of PS we have that α is valid iff ∀Var(α).α is valid 
iff ∀Var(α).α is consistent (since ∀Var(α).α has no free variable, it is equivalent to ⊤ or to ⊥, hence it is consistent 
precisely when it is valid). Hence every language satisfying CO but not satisfying VA unless P = NP cannot satisfy EN
unless P = NP. This is the case for each language among KROM[∨], HORN[∨], K/H[∨], renH[∨], AFF[∨], HORN[∨, ∃], 
K/H[∨, ∃], renH[∨, ∃].

SEN Every language satisfying EN also satisfies SEN. Hence, each of KROM, HORN, K/H, renH, HORN[∃], K/H[∃], renH[∃], 
AFF satisfies SEN. Furthermore, since for any C-QDAG representation α and a variable x ∈ PS, we have ∀x.α ≡ α|x ∧
α|¬x , every language satisfying both CD and ∧BC also satisfies SEN. Hence each of HORN[∨], KROM[∨], HORN[∨, ∃]
satisfies SEN. Since each of HORN[∨], KROM[∨] satisfies SEN, we also have that K/H[∨] satisfies SEN. Similarly, since 
each of HORN[∨, ∃], KROM[∨, ∃] (∼p KROM[∨]) satisfies SEN, we have that K/H[∨, ∃] satisfies SEN.
Finally, as to renH[∨] and renH[∨, ∃], let α be a CNF formula over n variables x1, . . . , xn . Let α′ be the HORN
formula obtained by replacing every positive literal xi in α by the negative literal ¬x′

i (where each x′
i is a fresh 



variable), conjoined with n additional clauses ¬xi ∨ ¬x′
i (i ∈ 1, . . . , n). Let β ′ be the KROM formula 

∧n
i=1(xi ∨ x′

i). By 
construction, α is inconsistent iff α′ ∧ β ′ is inconsistent. Now, we associate α in polynomial time with the renH[∨]
formula γ = (α′ ∧ ¬y) ∨ (β ′ ∧ y) where y is a fresh variable. γ also is a renH[∨, ∃] formula. We can easily check 
that ∀y.γ is equivalent to α′ ∧ β ′ . If renH[∨] (resp. renH[∨, ∃]) would satisfy SEN, then we could compute in time 
polynomial in the size of α a renH[∨] (resp. renH[∨, ∃]) formula equivalent to ∀y.γ . Since each of renH[∨] and 
renH[∨, ∃] satisfies CO, we would have a polynomial time algorithm for deciding the satisfiability of α, hence we 
would have P = NP.

∧C It is obvious that each of KROM, HORN, and AFF satisfies ∧C.

For K/H, renH, K/H[∃], renH[∃], the non-representability results (!) holds already in the bounded case (∧BC).

For K/H[∨], renH[∨], K/H[∨, ∃], renH[∨, ∃], the results comes from the fact that none of these languages satisfies 
∧BC, unless P = NP.

Consider now the cases of KROM[∨], HORN[∨], AFF[∨] and HORN[∨, ∃]. Observe that every clause is a formula from 
any of those languages since every literal is a KROM formula, a HORN formula, and an AFF formula. Determining 
whether a conjunction of clauses is consistent cannot be achieved in (deterministic) polynomial time unless P = NP

(this is the famous sat problem). Since each of KROM[∨], HORN[∨], AFF[∨] and HORN[∨, ∃] satisfies CO, none of them 
can also satisfy ∧C unless P = NP.

Finally, let us consider the case of HORN[∃]: let ∃X1.α1, ..., ∃Xn.αn be nHORN[∃] formulae where each αi (i ∈ 1, . . . , n) 
is a HORN formula. For each i ∈ 1, . . . , n, let αi

i be the HORN formula obtained by replacing in αi every occurrence 

of x ∈ Xi by a fresh variable xi , and let X i
i be the set of all the variables xi generated in the construction of αi

i . 

By construction, every variable from X i
i does not occur in any α j

j when j 6= i. Hence, 
∧n

i=1 ∃Xi .αi is equivalent to 

∃ 
⋃n

i=1 X i
i . 

∧n
i=1 αi

i . Clearly enough, ∃ 
⋃n

i=1 X i
i . 

∧n
i=1 αi

i is a HORN[∃] formula, and it can be generated in polynomial 
time from ∃X1.α1, ..., ∃Xn.αn .

∧BC Each of KROM, HORN, AFF and HORN[∃] satisfies ∧BC since it satisfies ∧C.

As to K/H and K/H[∃], consider the K/H formulae x ∨ y and ¬x ∨ ¬y ∨ ¬z. They are also K/H[∃] formulae. The 
conjunction of them neither is equivalent to a KROM formula, nor is equivalent to a HORN formula, hence it is not 
equivalent to a K/H formula. From Proposition 7, we know that K/H∼e K/H[∃], hence this conjunction is not equivalent 
to a K/H[∃] formula.

As to renH and renH[∃], consider the two renH formulae α = x ∨ y ∨ z and β = ¬x ∨¬y ∨¬z. They are also renH[∃]
formulae. There is no renH formula logically equivalent to the conjunction α ∧ β . From Proposition 7, we know that 
renH∼e renH[∃], hence this conjunction is not equivalent to a renH[∃] formula.

Let us now consider the cases of KROM[∨], HORN[∨], and AFF[∨]. Let α = ∨(α1, . . . , αn) and β = ∨(β1, . . . , βm) be 
two KROM[∨] (resp. HORN[∨], AFF[∨]) formulae. Then the formula 

∨n
i=1

∨m
j=1(αi ∧ β j) can be computed in time 

polynomial in the size of α plus the size of β , and is a KROM[∨] (resp. HORN[∨], AFF[∨]) formula logically equivalent 
to the conjunction α ∧ β .

Let us focus on the case of HORN[∨, ∃]. Let α and β be two HORN[∨, ∃] formulae. From Proposition 2, since HORN is 
stable by uniform renaming, one can compute in polynomial time a HORN[∨][∃] formula ∃X .α′ (resp. ∃Y .β ′) equivalent 
to α (resp. β) where α′ (resp. β ′) is a HORN[∨] formula. Let α′′ (resp. β ′′) be the HORN[∨] formula obtained by 
replacing in α′ (resp. β ′) every occurrence of x ∈ X (resp. x ∈ Y ) by a fresh variable x′ and let X ′ (resp. Y ′) be the set of 
all variables x′ generated in the construction of α′′ (resp. β ′′). By construction α ∧β is equivalent to (∃X .α′) ∧ (∃Y .β ′), 
which is in turn equivalent to ∃X ′ ∪Y ′.(α′′ ∧β ′′). Now, HORN[∨] satisfies ∧BC. Hence, a HORN[∨] formula γ equivalent 
to α′′ ∧ β ′′ can be generated in time polynomial in the size of α′′ plus the size of β ′′ . Accordingly, ∃X ′ ∪ Y ′.γ is a 
HORN[∨, ∃] formula equivalent to α ∧ β , and it can be computed in time polynomial in the size of α plus the size 
of β .

Finally, let us consider the cases of K/H[∨], renH[∨], K/H[∨, ∃], renH[∨, ∃]. Let α be a CNF formula over n variables 
x1, . . . , xn . Let α′ be the HORN formula obtained by replacing every positive literal xi in α by the negative literal ¬x′

i
(where each x′

i is a fresh variable), conjoined with n additional clauses ¬xi ∨ ¬x′
i (i ∈ 1, . . . , n). Let β ′ be the KROM

formula 
∧n

i=1(xi ∨ x′
i). Observe that β

′ is consistent, hence each of α′ and β ′ is a K/H formula and renH formula. As a 
consequence, each of them also belongs to K/H[∨], renH[∨], K/H[∨, ∃], and renH[∨, ∃]. Furthermore, both α′ and β ′

can be computed in time polynomial in the size of α. By construction, α is consistent iff α′ ∧ β ′ is consistent. If any 
of K/H[∨], renH[∨], K/H[∨, ∃], or renH[∨, ∃] would satisfy ∧BC, since each of these languages satisfy CO, we would 
have P = NP.

∨C The non-representability results for KROM, HORN, K/H, renH, AFF, HORN[∃], K/H[∃], renH[∃] come directly from 
the corresponding non-representability results for ∨BC. The fact that each of KROM[∨], HORN[∨], K/H[∨], renH[∨], 
AFF[∨], HORN[∨, ∃], K/H[∨, ∃], renH[∨, ∃] satisfies ∨C is immediate from their definitions.

∨BC Consider the two KROM formulae α = (x ∨ y) ∧ (¬y ∨ ¬z) and β = ¬x ∧ z. Each of α and β belongs as well to K/H, 
renH, K/H[∃], renH[∃]. Now, α ∨ β is logically equivalent to the formula (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z) for which 
no equivalent KROM formula (resp. K/H formula, renH formula) exists. From Proposition 7, we know that KROM ∼e

KROM[∃] (resp. K/H∼e K/H[∃], renH∼e renH[∃]), hence there are no KROM[∃] formula (resp. K/H[∃] formula, renH[∃]
formula) equivalent to α ∨ β .



As to the HORN case and the AFF case, it is enough to consider α = x and β = y: no HORN formula and no AFF
formula is equivalent to α ∨ β . From Proposition 7, we know that HORN ∼e HORN[∃], hence there is no HORN[∃]
formula equivalent to α ∨ β .

Finally, the fact that each of KROM[∨], HORN[∨], K/H[∨], renH[∨], AFF[∨], HORN[∨, ∃], K/H[∨, ∃], renH[∨, ∃] satisfies 
∨BC comes from the fact that each of them satisfies ∨C.

¬C Consider the KROM formula α = (¬x ∨ y) ∧ (¬x ∨ z) ∧ (x ∨ ¬y) ∧ (¬y ∨ z) ∧ (x ∨ ¬z) ∧ (y ∨ ¬z). α also is a HORN
formula, a K/H formula, a renH formula, a HORN[∃] formula, a K/H[∃] formula, and a renH[∃] formula. But ¬α is 
equivalent to the formula (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z) for which no equivalent KROM formula (resp. HORN formula, 
K/H formula, renH formula) exists. From Proposition 7, we know that HORN∼e HORN[∃], K/H∼e K/H[∃], and renH∼e

renH[∃]. Accordingly, the ¬C transformation is not always feasible in any of KROM, HORN, K/H, renH, HORN[∃], 
K/H[∃], renH[∃].
Similarly, consider the AFF formula α = ¬x ∧ ¬y. No AFF formula is equivalent to ¬α, hence the ¬C transformation 
is not always feasible in AFF.
As to KROM[∨], HORN[∨], K/H[∨], let us consider the DNF formula αn =

∨n
i=1(¬xi ∧ ¬yi ∧ ¬zi); αn is a KROM[∨]

formula, a HORN[∨] formula and a K/H[∨] formula. Now, in the proof of Proposition 11 (see Table 9), we show that 
the renH formula 

∧n
i=1(xi ∨ yi ∨ zi) equivalent to ¬αn has no polynomial-size representation in K/H[∨], hence the 

conclusion follows.

Finally, let us consider the cases of AFF[∨], renH[∨], renH[∨, ∃], K/H[∨, ∃] and HORN[∨, ∃]. DNF is a subset of each 
of these languages. Now, a DNF formula α is valid iff ¬α is inconsistent. The fact that each of AFF[∨], renH[∨], 
renH[∨, ∃], K/H[∨, ∃] and HORN[∨, ∃] satisfies CO completes the proof. ✷

Proposition 7.

• HORN[∃] ∼e HORN.

• K/H[∃] ∼e K/H.

• renH[∃] ∼e renH.

Proof.

• HORN, K/H: Every prime implicate of a HORN formula (resp. a KROM formula) α is a Horn clause (resp. a binary clause). 
Since the prime implicates of ∃X .α for a finite subset X of PS and a C-DAG representation α are the prime implicates 
δ of α such that Var(δ) ∩ X = ∅, we get that ∃X .α is equivalent to a HORN formula (resp. a KROM formula) when α is a 
HORN formula (resp. a KROM formula).

• renH: Let α be a renH formula. A PI formula equivalent to ∃X .α is given by the conjunction β of all prime implicates 
of α not containing any variable from X . If V is a Horn renaming for α, then V (α) is a HORN formula. Since V (β) is 
equivalent to ∃X .V (α) and since HORN[∃] ∼e HORN, V (β) is equivalent to a HORN formula. This shows that β is a renH
formula (V is a Horn renaming for it) and this concludes the proof. ✷

Proposition 8. KROM[∨], HORN[∨], K/H[∨], renH[∨], AFF[∨], HORN[∨, ∃], K/H[∨, ∃], renH[∨, ∃] are complete propositional 
languages.

Proof. This comes easily from the fact that TERM is included in each of KROM, HORN and AFF; as a consequence, its 
disjunction closure TERM[∨] is included into each of eight closures above; the fact that DNF = TERM[∨] is complete ends 
up the proof. ✷

Proposition 9.

• HORN[∃] <s HORN.

• K/H[∃] <s K/H.

• renH[∃] <s renH.

• renH and K/H[∃] are incomparable w.r.t. ≤s .

• K/H and HORN[∃] are incomparable w.r.t. ≤s .

Proof. Let us consider first the three first items. For L ∈ {HORN, K/H, renH}, we have to prove that L[∃] <s L, i.e., L[∃] ≤s L

and L £s L[∃]. That L[∃] ≤s L comes immediately from the inclusion L[∃] ⊇ L (cf. item 0. of Proposition 1). The other way 
around, consider the HORN[∃] formula αn = ∃{y1, . . . , yn}.((

∨n
i=1 ¬yi) ∧

∧n
i=1((¬xi ∨ yi) ∧ (¬zi ∨ yi))). Since HORN⊆ K/H

and HORN ⊆ renH, this is also a K/H[∃] formula and a renH[∃] formula (cf. item 0. of Proposition 1). Since αn has 2n

essential prime implicates, it does not have a CNF representation of size polynomial in n. Since HORN, K/H, and renH are 
subsets of CNF, the language CNF is at least as succinct as any of them, so αn does not have a representation of size of 
polynomial in n as a HORN formula, a K/H formula or a renH formula.



For the last two items, we have to prove that renH£s K/H[∃], K/H[∃] £s renH, K/H£s HORN[∃], HORN[∃] £s K/H. From 
Proposition 7, we know that K/H[∃] ∼e K/H, and that HORN[∃] ∼e HORN. Furthermore, we know that renH <e K/H <e

HORN (cf. Section 5). Altogether, this shows that renH <e K/H[∃] and both <e HORN[∃]. Especially, we have K/H[∃] £e

renH and HORN[∃] £e K/H. Due to the fact that the relation ≤s is included into the relation ≤e , we have that for any 
subsets L1 and L1 of C-QDAG, if L1 £e L2 , then L1 £s L2 . This shows that K/H[∃] £s renH and HORN[∃] £s K/H. Finally, 
in order to prove that renH £s K/H[∃] and K/H £s HORN[∃], it is enough to consider again the horn[∃] formula αn =
∃{y1, . . . , yn}.((

∨n
i=1 ¬yi) ∧

∧n
i=1((¬xi ∨ yi) ∧ (¬zi ∨ yi))). We have shown above that this formula also is a K/H[∃] formula 

but that it does not have a representation of size of polynomial in n as a renH formula or as a K/H formula. This concludes 
the proof. ✷

Proposition 10.

• HORN[∨, ∃] <s HORN[∨].
• K/H[∨, ∃] <s K/H[∨].
• renH[∨, ∃] <s renH[∨].

Proof. We focus on AC3, the class of propositional representations containing all disjunctions of CNF formulae and all con-
junctions of DNF formulae. Since every formula from HORN[∨], K/H[∨] or renH[∨] is a disjunction of CNF formulae, each 
of the languages HORN[∨], K/H[∨], and renH[∨] is a subset of AC3, hence we have AC3≤s HORN[∨], AC3≤s K/H[∨], and 
AC3 ≤s renH[∨]. In order to prove the proposition, it is thus enough to show that AC3 £s HORN[∨, ∃], AC3£s K/H[∨, ∃], 
and AC3 £s renH[∨, ∃]. Since HORN ⊆ K/H and HORN ⊆ renH, we have the inclusions HORN[∨, ∃] ⊆ K/H[∨, ∃] and 
HORN[∨, ∃] ⊆ renH[∨, ∃] (cf. item 0. of Proposition 1), which imply that K/H[∨, ∃] ≤s HORN[∨, ∃], and renH[∨, ∃] ≤s

HORN[∨, ∃]. Therefore, in order to show that AC3£s HORN[∨, ∃], AC3£s K/H[∨, ∃], and AC3£s renH[∨, ∃], it is enough to 
show that AC3£s HORN[∨, ∃]. We do it by exhibiting a HORN[∨, ∃] formula which has no polynomial-sized AC3 represen-

tation.

The proof is based on a theorem due to Sipser [74]. This theorem can be expressed as follows: consider any Boolean 
function αn

k
over n2k−2 variables, represented by a NNF formula of depth k > 1 and such that all the leaves are labeled 

by variables occurring once in the formula, the ith level (i ∈ 1, . . . , k − 1) from the bottom consists of nodes labeled by ∧
(resp. ∨) when i is even (resp. odd), the outdegree of the root node and the deepest internal nodes (those at depth k − 1) 
is equal to n > 1 and the outdegree of every other internal node is equal to n2 . Sipser showed that such an αn

k
cannot be 

represented by a polynomial-sized circuit over {¬, ∨, ∧} of depth at most k − 1.

Consider the Boolean function αn
4 over n6 variables. By construction, it can be represented by a disjunction of n conjunc-

tions β1, . . . , βn of DNF formulae, where each βi (i ∈ 1, . . . , n) is the conjunction of n2DNFγi, j ( j ∈ 1, . . .n2), each DNFγi, j

( j ∈ 1, . . .n2) consists of the disjunction of n2 terms δi, j,k (k ∈ 1, . . .n2), and finally each term δi, j,k (k ∈ 1, . . .n2) con-
sists of the conjunction of n negated variables ¬xi, j,k,l (l ∈ 1, . . . , n) occurring only once in αn

4 . For each i ∈ 1, . . . , n and 

j ∈ 1, . . .n2 , consider now the HORN formula hi, j such that

hi, j =
(

n2
∨

k=1

¬yi, j,k

)

∧
n2
∧

k=1

n
∧

l=1

(yi, j,k ∨ ¬xi, j,k,l).

hi, j contains n3 +1 clauses of size at most n2 , hence the HORN formula 
∧n2

j=1 hi, j contains n
5 +n2 clauses of size at most n2 . 

Let Y =
⋃n

i=1(
⋃n2

j=1(
⋃n2

k=1{yi, j,k})). By construction, the HORN[∨, ∃] formula ∃Y .(
∨n

i=1(
∧n2

j=1 hi, j)) can be generated in time 
polynomial in n. From Sipser theorem, αn

4 has no polynomial-sized AC3 representation. It remains to show that αn
4 is 

equivalent to ∃Y .(
∨n

i=1(
∧n2

j=1 hi, j)). First of all, since existential quantifications “distribute” over disjunctions and since 

each yi, j,k (i ∈ 1, . . . , n, j ∈ 1, . . . , n2k ∈ 1, . . . , n2) does not occur in hi′, j′ (i′ ∈ 1, . . . , n, j ∈ 1, . . . , n2) unless i′ = i and 

j′ = j, we have that ∃Y .(
∨n

i=1(
∧n2

j=1 hi, j)) is equivalent to 
∨n

i=1(
∧n2

j=1 ∃ 
⋃n2

k=1{yi, j,k}.hi, j). Finally, by construction, for each 

i ∈ 1, . . . , n and j ∈ 1, . . . , n2 , γi, j =
∨n2

k=1 δi, j,k is the IP representation of ∃ 
⋃n2

k=1{yi, j,k}.hi, j , hence it is equivalent to it. The 
replacement metatheorem for propositional logic concludes the proof. ✷

Proposition 11. The results in Table 3 hold.

AFF[∨] renH[∨,∃] K/H[∨,∃] HORN[∨,∃] KROM[∨]
AFF[∨] ∼s £s £s £s £s

renH[∨,∃] £s ∼s ≤s ≤s ≤s

K/H[∨,∃] £s £s ∼s ≤s ≤s

HORN[∨,∃] £s £s £s ∼s £s

KROM[∨] £s £s £s £s ∼s

The relative succinctness of the full disjunctive closures of KROM, HORN, AFF, K/H, and 
renH.



Table 5

The relative succinctness of the full disjunctive closures of KROM, HORN, AFF, K/H, 
and renH.

AFF[∨] renH[∨,∃] K/H[∨,∃] HORN[∨,∃] KROM[∨]
AFF[∨] ∼s

renH[∨,∃] ∼s ≤s

K/H[∨,∃] ∼s ≤s ≤s

HORN[∨,∃] ∼s

KROM[∨] ∼s

Table 6

The relative succinctness of the full disjunctive closures of KROM, HORN, AFF, K/H, 
and renH.

AFF[∨] renH[∨,∃] K/H[∨,∃] HORN[∨,∃] KROM[∨]
AFF[∨] ∼s

renH[∨,∃] ∼s ≤s ≤s ≤s

K/H[∨,∃] ∼s ≤s ≤s

HORN[∨,∃] ∼s

KROM[∨] ∼s

Table 7

The relative succinctness of the full disjunctive closures of KROM, HORN, AFF, K/H, 
and renH.

AFF[∨] renH[∨,∃] K/H[∨,∃] HORN[∨,∃] KROM[∨]
AFF[∨] ∼s

renH[∨,∃] ∼s ≤s ≤s ≤s

K/H[∨,∃] ∼s ≤s ≤s

HORN[∨,∃] £s £s ∼s £s

KROM[∨,∃] ∼s

Proof. The proof is broken into six steps, where we prove some succinctness relationships between languages, and then 
apply transitivity of ≤s to possibly infer new relationships. Associated with each step of the proof is a table in which we 
mark all relationships proved at the step.

Table 5: From the obvious equalities and inclusions HORN[∨, ∃] ⊆ K/H[∨, ∃], HORN[∨, ∃] ⊆ renH[∨, ∃], KROM[∨] ⊆ K/H[∨, ∃], 
we get the results given in Table 5.

Table 6: Since K/H[∨, ∃] ∼p K/H[∃][∨] (cf. Proposition 1), every K/H[∨, ∃] formula can be associated in polynomial time with 
an equivalent disjunction 

∨n
i=1 ∃Xi .βi of K/H[∃] formulae. Since KROM satisfies CO, we can easily determine in polynomial 

time which βi are consistent. All the βi (i ∈ 1, . . . , n) which are inconsistent can be removed from the disjunction without 
questioning equivalence (if they are all inconsistent, the input formula is associated with ⊥, which is a renH[∨, ∃] formula). 
In the remaining case, since every consistent KROM formula is a renH formula, the resulting disjunction is a renH[∨, ∃]
formula equivalent to the input formula. Hence we get the results given in Table 6.

Table 7: Let us now show that HORN[∨, ∃] £s KROM[∨, ∃], HORN[∨, ∃] £s K/H[∨, ∃], and HORN[∨, ∃] £s renH[∨, ∃]. To do 
so, it is enough to prove that HORN[∨, ∃] £s KROM. Consider the KROM formula αn =

∧n
i=1(xi ∨ yi) for any n. Towards a 

contradiction, suppose that there exists in HORN[∨, ∃] a formula equivalent to αn and whose size is polynomial in n; since 
HORN[∨, ∃] ∼p HORN[∃][∨] (cf. Proposition 1), there exists as well a HORN[∃][∨] formula β =

∨m
i=1 ∃Xi .βi equivalent to 

αn and whose size is polynomial in n. Especially, m must remain polynomial in n. We also know that HORN[∃] ∼e HORN

(cf. Proposition 7). Hence, if β exists, then there also exists a HORN[∨] formula γ =
∨m

i=1 γi equivalent to αn and with m
polynomial in n. Note that the size of γi (i ∈ 1, . . . , m) can be exponential in the size of βi (this does not matter for the 
remaining part of the proof).

By construction, αn has 2n minimal models ω over Var(αn), where for each i ∈ 1, . . . , n, exactly one of the two variables 
xi and yi are set to 1 by ω. Consider now any pair ω, ω′ of distinct minimal models of αn; by construction, and(ω, ω′)
maps each variable to 0, hence it is not a model of αn . Thus, as a consequence of the characterization of HORN by closure of 
models, ω and ω′ cannot be models of the same formula γi . Therefore, every HORN[∨] formula γ =

∨m
i=1 γi equivalent to 

αn must be such that m ≥ 2n . This shows that there is no HORN[∨, ∃] formula equivalent to αn and whose size is polynomial 
in n. Thus, we get the results given in Table 7.

Table 8: Let us now show that KROM[∨] £s HORN[∨, ∃], KROM[∨] £s K/H[∨, ∃], and KROM[∨] £s renH[∨, ∃]. To do so, it 
is enough to prove that KROM[∨] £s HORN. Consider the HORN formula αn =

∧n
i=1(¬xi ∨ ¬yi ∨ ¬zi) for any n. Towards a 

contradiction, suppose that there exists in KROM[∨] a formula γ =
∨m

i=1 γi equivalent to αn and whose size is polynomial 
in n; then m must remain polynomial in n.



Table 8

The relative succinctness of the full disjunctive closures of KROM, HORN, AFF, K/H, 
and renH.

AFF[∨] renH[∨,∃] K/H[∨,∃] HORN[∨,∃] KROM[∨]
AFF[∨] ∼s

renH[∨,∃] ∼s ≤s ≤s ≤s

K/H[∨,∃] ∼s ≤s ≤s

HORN[∨,∃] £s £s ∼s £s

KROM[∨] £s £s £s ∼s

Table 9

The relative succinctness of the full disjunctive closures of KROM, HORN, AFF, K/H, 
and renH.

AFF[∨] renH[∨,∃] K/H[∨,∃] HORN[∨,∃] KROM[∨]
AFF[∨] ∼s

renH[∨,∃] ∼s ≤s ≤s ≤s

K/H[∨,∃] £s ∼s ≤s ≤s

HORN[∨,∃] £s £s ∼s £s

KROM[∨] £s £s £s ∼s

By construction, αn has 7n models over Var(αn). How many models of αn can be models of the same γi (i ∈ 1, . . . , m)? 
Let us consider any ω1, ω2, ω3 ∈ Mod(γi), it cannot be the case that for any i ∈ 1, . . . , n, we have ω1(xi) = 0, ω1(yi) = 1, 
ω1(zi) = 1, ω2(xi) = 1, ω2(yi) = 0, ω2(zi) = 1, ω3(xi) = 1, ω3(yi) = 1, ω3(zi) = 0. Indeed, if this were the case, we would 
have maj(ω1, ω2, ω3)(xi) = maj(ω1, ω2, ω3)(yi) = maj(ω1, ω2, ω3)(zi) = 1. If γi is a KROM formula, then maj(ω1, ω2, ω3)

should also be a model of γi . But maj(ω1, ω2, ω3) is not a model of αn . Thus, each γi cannot have more than 6n models of 
αn over Var(αn). Subsequently, the pigeon/hole principle shows that at least ⌈( 7

6
)n⌉KROM formulae γi are required to cover 

the models of αn . The fact that ⌈( 76 )n⌉ is exponential in the size of αn concludes the proof. By transitivity of ≤s , we get the 
results given in Table 8.

Table 9: We also have to show that K/H[∨, ∃] £s renH[∨, ∃]. To do so, it is enough to prove that K/H[∨, ∃] £s renH. 
Consider the renH formula αn =

∧n
i=1(xi ∨ yi ∨ zi) for any n (Var(αn) is a possible Horn renaming for it, since if one 

replaces in αn every literal from LVar(αn) by its complementary literal, one gets a HORN formula).

Towards a contradiction, suppose that there exists in K/H[∨, ∃] a formula equivalent to αn and whose size is polynomial 
in n; since K/H[∨, ∃] ∼p K/H[∃][∨] (cf. Proposition 1), there exists as well a K/H[∃][∨] formula β =

∨m
i=1 ∃Xi .βi equivalent 

to αn and whose size is polynomial in n. Especially, m must remain polynomial in n. We also know that K/H[∃] ∼e K/H

(cf. Proposition 7). Hence, if β exists, then there also exists a K/H[∨] formula γ =
∨m

i=1 γi equivalent to αn and with m
polynomial in n.

Let us now prove that if such a γ exists, then there also exists a KROM[∨] formula δ =
∨m

i=1 δi equivalent to αn and with 
m polynomial in n. Consider any K/H formula γi (i ∈ 1, . . . , m) and suppose that it is a HORN formula. Then γi is equivalent 
to an implicant of αn . This is obvious if γi is inconsistent. In the remaining case, every clause xi ∨ yi ∨ zi (i ∈ 1, . . . , n) of αn

must be implied by a prime implicate of γi , which must be a Horn clause; hence this prime implicate must be equivalent 
to xi , yi or zi . Accordingly, γi must be equivalent to a term, hence to a KROM formula.

It remains to show that αn has no polyspace representation in KROM[∨]. The proof is similar to the one used for showing 
that KROM[∨, ∃] £s HORN (this is not surprising since αn is a reverse Horn CNF formula). We get the results given in Table 9.

Table 10: Finally, we show that AFF[∨] is incomparable w.r.t. ≤s w.r.t. any of renH[∨, ∃], K/H[∨, ∃], HORN[∨, ∃]
and KROM[∨]. We first show that renH[∨, ∃] £s AFF, which proves enough to conclude that renH[∨, ∃] £s AFF[∨], 
K/H[∨, ∃] £s AFF[∨], HORN[∨, ∃] £s AFF[∨], and KROM[∨] £s AFF[∨].

Let αn =
∧n

i=1(xi ⊕ yi ⊕ zi ⊕ ⊤). By construction αn is an AFF formula. Furthermore, the restriction of any model of 
αn over any {xi, yi, zi} (i ∈ 1, . . . , n) is of the form 000, 011, 101 or 110. Thus, αn has 4n models over Var(αn). Let β be 
a renH[∨, ∃] formula equivalent to αn . Since renH[∨, ∃] ∼p renH[∃][∨] (cf. Proposition 1), β is polynomially translatable 
into a formula 

∨m
i=1 βi from renH[∃][∨]. Therefore, if β is a polynomial-sized representation of αn , then 

∨m
i=1 βi also is a 

polynomial-sized representation of αn , which implies that m must not be exponential in n.
Since renH[∃] ∼e renH (cf. Proposition 7), each βi (i ∈ 1, . . . , m) can be translated into an equivalent renH formula γi

(which size can be exponential in the size of βi , but this does not matter). The point is that if β has a renH[∃][∨] rep-

resentation as a disjunction of mrenH[∃] formulae, then it also has a renH[∨] representation as a disjunction of mrenH
formulae.

Since each γi (i ∈ 1, . . . , m) is a renH formula which entails αn , from [75], there exists a model V i of αn such that V i is 
a Horn renaming for γi , and V i(γi) |H V i(αn). As explained above, the restriction of V i over any {xi, yi, zi} (i ∈ 1, . . . , n) is 
of the form 000, 011, 101 or 110. Since applying V i leads to renaming an even number of variables in each set {xi , yi, zi}
(i ∈ 1, . . . , n), we necessarily have V i(xi ⊕ yi ⊕ zi ⊕ ⊤) ≡ xi ⊕ yi ⊕ zi ⊕ ⊤, and subsequently V i(αn) ≡ αn .



Table 10

The relative succinctness of the full disjunctive closures of KROM, HORN, AFF, K/H, 
and renH.

AFF[∨] renH[∨,∃] K/H[∨,∃] HORN[∨,∃] KROM[∨]
AFF[∨] ∼s £s £s £s £s

renH[∨,∃] £s ∼s ≤s ≤s ≤s

K/H[∨,∃] £s £s ∼s ≤s ≤s

HORN[∨,∃] £s £s £s ∼s £s

KROM[∨] £s £s £s £s ∼s

Thus, we get that 
∨m

i=1 V i(γi) is a HORN[∨] formula equivalent to αn . At this stage, we have shown that if αn has a 
polynomial-sized representation as a renH[∨, ∃] formula, then it must also have a HORN[∨] representation with a number 
of disjoints that is polynomial in n.

We are now going to prove that this is not the case, i.e., the number of disjoints in any HORN[∨] formula 
∨m

i=1 δi
equivalent to αn actually is exponential in n. Consider the subset S of models ω of αn over Var(αn) such that for each 
i ∈ 1, . . . , n the restriction of ω over {xi, yi, zi} is of the form 011, 101 or 110. Every pair of distinct models ω and ω′ from 
S is such that and(ω, ω′) is not a model of αn; indeed, there must exist i ∈ 1, . . . , n such that the restrictions of ω and ω′

over {xi, yi, zi} differ, and and(ω, ω′) is not a model of xi ⊕ yi ⊕ zi ⊕ ⊤ (its restriction over {xi, yi, zi} is of the form 001, 
010 or 100). Thus, because of the closure property of HORN formulae, every pair of distinct models in S cannot be models 
of the same HORN formula δi . Since S contains 3n models, the number m of disjoints in 

∨m
i=1 δi is lower bounded by 3n . 

This shows that αn has no polynomial-sized representation as a renH[∨, ∃] formula.

Conversely, let us show that AFF[∨] is not at least as succinct as any of renH[∨, ∃], K/H[∨, ∃], HORN[∨, ∃] and KROM[∨]. 
Consider the formula αn =

∧n
i=1(¬xi ∨ ¬yi) for any n. It is a KROM formula and a HORN formula. Hence, it is also a K/H

formula and a renH formula. Since Var(αn) contains 2n atoms, 4n interpretations over Var(αn) have to be considered. 
Among them, one can find 3n models of αn , only, since for each i ∈ 1, . . . , n, there are only 3 truth assignments of xi
and yi (over the four possible assignments of those two variables) which satisfy ¬xi ∨ ¬yi . Now, there is no AFF formula 
β implying αn and with strictly more than 2n models (taken in the set of models of αn since β |H αn must hold). By 
reductio ad absurdum: if this were the case, then one could find i ∈ 1, . . . , n and ω1, ω2, ω3 ∈ Mod(αn) such that ω1(xi) = 0, 
ω1(yi) = 0, ω2(xi) = 0, ω2(yi) = 1, ω3(xi) = 1, ω3(yi) = 0. If ω1, ω2, ω3 ∈ Mod(β) and β is an AFF formula, then the affine 
closure property requires ⊕(ω1, ω2, ω3) to be a model of β , hence a model of αn . But ⊕(ω1, ω2, ω3) falsifies ¬xi ∨ ¬yi . 
Subsequently, from the pigeon/hole principle, every AFF[∨] formula equivalent to αn must contain at least ⌈( 3

2
)n⌉AFF

formulae as disjuncts. The fact that ⌈( 3
2
)n⌉ is exponential in the size of αn concludes the proof. ✷

Proposition 12. The results in Table 4 hold.

AFF[∨] renH[∨,∃] K/H[∨,∃] HORN[∨,∃] KROM[∨,∃]
CNF £s ,¤s £s ,¤s £s ,¤s £s ,¤s £s ,¤s

PI £s ,¤s £s ,¤s £s ,¤s £s ,¤s £s ,¤s

DNNFT £s ,¤s £s ,¤s £s ,¤s £s ,¤s £s ,¤s

d-DNNF £∗
s ,¤s £∗

s ,¤s £∗
s ,¤s £∗

s ,¤s £∗
s ,¤s

DNF £s , ≥s £s , ≥s £s , ≥s £s , ≥s £s , ≥s

IP £s , ≥s £s , ≥s £s , ≥s £s , ≥s £s , ≥s

OBDD< £s ,¤s £s ,¤s £s ,¤s £s ,¤s £s ,¤s

Comparing w.r.t. succinctness the full disjunctive closures of KROM, HORN, K/H, 
renH, and AFF, with OBDD< , IP, DNF, d-DNNF, DNNFT , PI, and CNF. ∗ means 
that the result holds unless the polynomial hierarchy collapses.

Proof. Again, the proof is broken in a number of steps, where we prove some succinctness relationships between languages, 
and then apply transitivity of ≤s to possibly infer new relationships. Associated with each step of the proof is a table in 
which we mark all relationships proved at the step.

Table 11: Let L be any language among AFF[∨], renH[∨], K/H[∨], HORN[∨], KROM[∨], and the corresponding existential 
closures renH[∨, ∃], K/H[∨, ∃], HORN[∨, ∃]. Since TERM⊆ AFF, TERM⊆ HORN, TERM⊆ KROM, HORN⊆ renH and KROM≥p

renH, we obviously have DNF≥p L, hence we have DNF ≥s L. In [1], it is proven that PI ≥s CNF, DNF ¤s CNF, DNF ¤s

OBDD< , and IP ≥s DNF. By transitivity of ≤s , we get the results given in Table 11.

Table 12: Consider the following consistent KROM formula αn =
∧n

i=1(¬xi ∨¬yi); it is also a HORN formula, hence it belongs 
to the disjunction closure and to the full disjunctive closure of each language among KROM, HORN, K/H, and renH. αn has 
2n essential prime implicants,10 hence there is no polynomial-sized IP formula and no polynomial-sized DNF formula 

10 A prime implicant γ of a formula α is essential iff the disjunction of all prime implicants of α except γ (up to logical equivalence) is not equivalent 
to α.



Table 11

Comparing w.r.t. succinctness the full disjunctive closures of KROM, HORN, K/H, 
renH, and AFF, with other classes of propositional representations.

AFF[∨] renH[∨,∃] K/H[∨,∃] HORN[∨,∃] KROM[∨]
CNF £s £s £s £s £s

PI £s £s £s £s £s

DNNFT

d-DNNF

DNF ≥s ≥s ≥s ≥s ≥s

IP ≥s ≥s ≥s ≥s ≥s

OBDD< £s £s £s £s £s

Table 12

Comparing w.r.t. succinctness the full disjunctive closures of KROM, HORN, K/H, 
renH, and AFF, with other classes of propositional representations.

AFF[∨] renH[∨,∃] K/H[∨,∃] HORN[∨,∃] KROM[∨]
CNF £s £s £s £s £s

PI £s £s £s £s £s

DNNFT

d-DNNF

DNF £s , ≥s £s , ≥s £s , ≥s £s , ≥s £s , ≥s

IP £s , ≥s £s , ≥s £s , ≥s £s , ≥s £s , ≥s

OBDD< £s £s £s £s £s

Table 13

Comparing w.r.t. succinctness the full disjunctive closures of KROM, HORN, K/H, 
renH, and AFF, with other classes of propositional representations.

AFF[∨] renH[∨,∃] K/H[∨,∃] HORN[∨,∃] KROM[∨]
CNF £s , ¤s £s , ¤s £s , ¤s £s , ¤s £s , ¤s

PI £s , ¤s £s , ¤s £s , ¤s £s , ¤s £s , ¤s

DNNFT ¤s ¤s ¤s ¤s ¤s

d-DNNF ¤s ¤s ¤s ¤s ¤s

DNF £s , ≥s £s , ≥s £s , ≥s £s , ≥s £s , ≥s

IP £s , ≥s £s , ≥s £s , ≥s £s , ≥s £s , ≥s

OBDD< £s , ¤s £s , ¤s £s , ¤s £s , ¤s £s , ¤s

equivalent to it. Similarly, the AFF formula βn =
⊕n

i=1 xi (which is also an AFF[∨] formula) has 2n−1 essential prime 
implicants, hence there is no polynomial-sized IP formula and no polynomial-sized DNF formula equivalent to it. We get 
the results given in Table 12.

Table 13: In the proof of Proposition 11, we have shown that the AFF formula αn =
∧n

i=1(xi ⊕ yi ⊕ zi ⊕ ⊤) has no 
polynomially-sized renH[∨, ∃] representation. The point is that αn has a polynomially-sized PI representation (consist-
ing in 4n clauses: ¬xi ∨ ¬yi ∨ ¬zi , ¬xi ∨ yi ∨ zi , xi ∨ ¬yi ∨ zi , xi ∨ yi ∨ ¬zi for each i ∈ 1, . . . , n), and a polynomially-sized 
OBDD< representation for every ordering < which is such that xi , yi , zi (i ∈ 1, . . . , n) are successive elements. Indeed, for 
each i ∈ 1, . . . , n, one can generate in constant time an OBDD< representation equivalent to each xi ⊕ yi ⊕ zi ⊕ ⊤ and then, 
starting with the OBDD< representation of x1 ⊕ y1 ⊕ z1 ⊕ ⊤, in an iterative way, replace the ⊤ sink of the current OBDD<

representation by the root of the next OBDD< representation.

Furthermore, in the proof of Proposition 11, we proved that the formula αn =
∧n

i=1(¬xi ∨ ¬yi) (for any n) does not 
have a polynomial-size AFF[∨] representation. The point is that αn is a PI formula, and it also has a polynomially-sized 
OBDD< representation for every ordering < which is such that xi , yi (i ∈ 1, . . . , n) are successive elements. Indeed, for each 
i ∈ 1, . . . , n, one can generate in constant time an OBDD< representation equivalent to each ¬xi ∨ ¬yi and then, starting 
with the OBDD< representation of ¬x1 ∨ ¬y1 , in an iterative way, replace the ⊤ sink of the current OBDD< representation 
by the root of the next OBDD< representation.

Given that PI≥p CNF, OBDD< ≥p d-DNNF, OBDD< ≥p DNNFT , and the succinctness relationships given in Proposition 11, 
by transitivity of ≤s , we get the results given in Table 13.

Table 14: As to DNNFT , it is enough to show that the family of circular bit shift functions cbsm have polynomially-sized 
representations in KROM[∨], HORN[∨], K/H[∨], and AFF[∨]. Indeed, it has been proven that such functions do not have 
polynomially-sized SDNNF representations, where SDNNF is the union of DNNFT for all vtrees T [20].

For any positive integer m, consider the following Boolean function over 2m+1 +m variables cbsm(x0, . . . , x2m−1, y0, . . . ,
y2m−1, i0, . . . , im−1) which is the semantics of the formula

αm =
∨

b0,...,bm−1∈{0,1}

(

m−1
∧

j=0

i
b j

j ∧
2m−1
∧

j=0

x j ⇔ y( j+num(b0,...,bm−1))mod2m

)

,



Table 14

Comparing w.r.t. succinctness the full disjunctive closures of KROM, HORN, K/H, 
renH, and AFF, with other classes of propositional representations.

AFF[∨] renH[∨,∃] K/H[∨,∃] HORN[∨,∃] KROM[∨]
CNF £s , ¤s £s , ¤s £s , ¤s £s , ¤s £s , ¤s

PI £s , ¤s £s , ¤s £s , ¤s £s , ¤s £s , ¤s

DNNFT £s , ¤s £s , ¤s £s , ¤s £s , ¤s £s , ¤s

d-DNNF £∗
s , ¤s £∗

s , ¤s £∗
s , ¤s £∗

s , ¤s £∗
s , ¤s

DNF £s , ≥s £s , ≥s £s , ≥s £s , ≥s £s , ≥s

IP £s , ≥s £s , ≥s £s , ≥s £s , ≥s £s , ≥s

OBDD< £s , ¤s £s , ¤s £s , ¤s £s , ¤s £s , ¤s

whose size is linear in the number of variables of cbsm . In this formula, i
b j

j denotes the literal i j when b j = 0 and the literal 

¬i j when b j = 1; num is the mapping from {0, 1}m to the set of natural numbers which gives the integer represented by the 
binary string b0 . . .bm−1 . Thus, the variables i0, . . . , im−1 make precise how the bits of the binary string y0 . . . y2m−1 must 
be (circularly) shifted, and cbsm(x0, . . . , x2m−1, y0, . . . , y2m−1, i0, . . . , im−1) = 1 exactly when the variables x0, . . . , x2m−1 and 
the shifted variables y0, . . . , y2m−1 are pairwise equal.

For each b0, . . . , bm−1 ∈ {0, 1}, the formula

βb0,...,bm−1
=

m−1
∧

j=0

i
b j

j ∧
2m−1
∧

j=0

x j ⇔ y( j+num(b0,...,bm−1))mod2m

is equivalent to the KROM formula

γb0,...,bm−1
=

m−1
∧

j=0

i
b j

j ∧
2m−1
∧

j=0

(¬x j ∨ y( j+num(b0,...,bm−1))mod2m ) ∧
2m−1
∧

j=0

(x j ∨ ¬y( j+num(b0,...,bm−1))mod2m ).

Clearly enough, γb0,...,bm−1
also is a HORN formula, hence it is a K/H formula and a renH formula. Similarly, βb0,...,bm−1

is 
also equivalent to the AFF formula

δb0, . . . ,bm−1 =
m−1
∧

j=0

lit(i j,b j) ∧
2m−1
∧

j=0

x j ⊕ y( j+num(b0,...,bm−1))mod2m ⊕ ⊤

where lit(i j, b j) = i j when b j = 0 and lit(i j, b j) = i j ⊕ ⊤ when b j = 1. Both γb0,...,bm−1
and δb0,...,bm−1

can be computed in 
time linear in the size of βb0,...,bm−1

, hence linear in the number of variables of cbsm .

As a consequence, 
∨

b0,...,bm−1∈{0,1} γb0,...,bm−1
is a KROM[∨] (and a HORN[∨], a K/H[∨], a renH[∨]) formula equivalent 

to αm , and 
∨

b0,...,bm−1∈{0,1} δb0,...,bm−1
is an AFF[∨] formula equivalent to αm . The fact that the size of any of

∨

b0,...,bm−1∈{0,1}
γb0,...,bm−1

and

∨

b0,...,bm−1∈{0,1}
δb0,...,bm−1

is linear in the number of variables of cbsm completes the proof.
As to d-DNNF, the result comes easily from the fact that d-DNNF is not at least as succinct as DNF, unless the polynomial 

hierarchy collapses [1], plus the fact that DNF is polynomially translatable into the disjunction closure and into the full 
disjunctive closure of each of KROM, HORN, K/H, and renH.

We finally get the results given in Table 14. ✷
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