Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Some examples of composition operators and their approximation numbers on the Hardy space of the bi-disk

Abstract : We give examples of composition operators $C_\Phi$ on $H^2 (\D^2)$ showing that the condition $\|\Phi \|_\infty = 1$ is not sufficient for their approximation numbers $a_n (C_\Phi)$ to satisfy $\lim_{n \to \infty} [a_n (C_\Phi) ]^{1/\sqrt{n}} = 1$, contrary to the $1$-dimensional case. We also give a situation where this implication holds. We make a link with the Monge-Amp\`ere capacity of the image of $\Phi$.
Document type :
Preprints, Working Papers, ...
Complete list of metadata

Cited literature [24 references]  Display  Hide  Download

https://hal-univ-artois.archives-ouvertes.fr/hal-01536919
Contributor : Daniel Li <>
Submitted on : Monday, June 12, 2017 - 11:36:49 AM
Last modification on : Friday, November 27, 2020 - 2:18:02 PM
Long-term archiving on: : Thursday, September 14, 2017 - 12:41:07 PM

Files

Examples-bidisk.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01536919, version 1
  • ARXIV : 1706.03570

Citation

Daniel Li, Hervé Queffélec, Luis Rodríguez-Piazza. Some examples of composition operators and their approximation numbers on the Hardy space of the bi-disk. 2017. ⟨hal-01536919v1⟩

Share

Metrics

Record views

106

Files downloads

66