Approximation numbers of weighted composition operators

Abstract : We study the approximation numbers of weighted composition operators $f\mapsto w\cdot(f\circ\varphi)$ on the Hardy space $H^2$ on the unit disc. For general classes of such operators, upper and lower bounds on their approximation numbers are derived. For the special class of weighted lens map composition operators with specific weights, we show how much the weight $w$ can improve the decay rate of the approximation numbers, and give sharp upper and lower bounds. These examples are motivated from applications to the analysis of relative commutants of special inclusions of von Neumann algebras appearing in quantum field theory (Borchers triples).
Type de document :
Autre publication
preprint. 2016
Liste complète des métadonnées

https://hal-univ-artois.archives-ouvertes.fr/hal-01410297
Contributeur : Daniel Li <>
Soumis le : mardi 6 décembre 2016 - 15:40:14
Dernière modification le : jeudi 27 septembre 2018 - 14:58:02

Lien texte intégral

Identifiants

  • HAL Id : hal-01410297, version 1
  • ARXIV : 1612.01177

Collections

Citation

Gandalf Lechner,, Daniel Li, Hervé Queffélec, Luis Rodríguez-Piazza. Approximation numbers of weighted composition operators . preprint. 2016. 〈hal-01410297〉

Partager

Métriques

Consultations de la notice

132