Intersection Homology. General perversities and topological invariance

Abstract : Topological invariance of the intersection homology of a pseudomanifold is one of the main properties of this homology. It has been first established by M. Goresky and R. MacPherson and revisited by H. King some years later, with the introduction of an intrinsic stratification, $X^*$, associated to a pseudomanifold $X$. In this work, we show that some topological invariance remains true in the case of general perversities, defined on each stratum and not only from the codimension. For doing that, we introduce in this general framework, the concept of K-perversities which correspond to GM-perversities. From a K-perversity, $\bar{p}$, on a pseudomanifold $X$, we construct a perversity, $\bar{q}$, on $X^*$ such that $H_{*}^{\overline{p}}(X)\cong H_*{\overline{q}}(X^*)$. We study also the extension of this result to a variation of intersection homology, more adapted to large perversities. \\
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal-univ-artois.archives-ouvertes.fr/hal-01272027
Contributeur : Martintxo Saralegi-Aranguren <>
Soumis le : samedi 25 août 2018 - 21:58:14
Dernière modification le : mercredi 29 août 2018 - 01:09:40

Fichier

1602.03009.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01272027, version 2

Collections

Citation

David Chataur, Martintxo Saralegi-Aranguren, Daniel Tanré. Intersection Homology. General perversities and topological invariance. 2016. 〈hal-01272027v2〉

Partager

Métriques

Consultations de la notice

20

Téléchargements de fichiers

29