Abstract : We prove that the basic intersection cohomology $IH^*_{\overline{p}}(M / \mathcal{F})$, where $\mathcal{F}$ is the singular foliation determined by an isometric action of a Lie group $G$ on the compact manifold $M$, verifies the Poincaré Duality Property.
https://hal-univ-artois.archives-ouvertes.fr/hal-00936000 Contributor : Martintxo Saralegi-ArangurenConnect in order to contact the contributor Submitted on : Saturday, February 13, 2016 - 10:15:46 AM Last modification on : Friday, May 6, 2022 - 6:04:02 PM Long-term archiving on: : Saturday, November 12, 2016 - 7:44:45 PM
Martintxo Saralegi-Aranguren, Robert Wolak. Poincaré duality of the basic intersection cohomology of a Killing foliation. Monatshefte für Mathematik, Springer Verlag, 2016, 180, pp.145-166. ⟨10.1007/s00605-016-0882-4⟩. ⟨hal-00936000⟩