Poincaré duality of the basic intersection cohomology of a Killing foliation

Abstract : We prove that the basic intersection cohomology $IH^*_{\overline{p}}(M / \mathcal{F})$, where $\mathcal{F}$ is the singular foliation determined by an isometric action of a Lie group $G$ on the compact manifold $M$, verifies the Poincaré Duality Property.
Complete list of metadatas

Cited literature [33 references]  Display  Hide  Download

https://hal-univ-artois.archives-ouvertes.fr/hal-00936000
Contributor : Martintxo Saralegi-Aranguren <>
Submitted on : Saturday, February 13, 2016 - 10:15:46 AM
Last modification on : Wednesday, April 27, 2016 - 1:23:22 PM
Long-term archiving on : Saturday, November 12, 2016 - 7:44:45 PM

File

VersionFinal.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

M. Saralegi-Aranguren, R. Wolak. Poincaré duality of the basic intersection cohomology of a Killing foliation. Monatshefte für Mathematik, Springer Verlag, 2016, 180, pp.145-166. ⟨10.1007/s00605-016-0882-4⟩. ⟨hal-00936000⟩

Share

Metrics

Record views

194

Files downloads

350