Skip to Main content Skip to Navigation
Journal articles

Poincaré duality of the basic intersection cohomology of a Killing foliation

Abstract : We prove that the basic intersection cohomology $IH^*_{\overline{p}}(M / \mathcal{F})$, where $\mathcal{F}$ is the singular foliation determined by an isometric action of a Lie group $G$ on the compact manifold $M$, verifies the Poincaré Duality Property.
Complete list of metadata

Cited literature [33 references]  Display  Hide  Download

https://hal-univ-artois.archives-ouvertes.fr/hal-00936000
Contributor : Martintxo Saralegi-Aranguren Connect in order to contact the contributor
Submitted on : Saturday, February 13, 2016 - 10:15:46 AM
Last modification on : Friday, May 6, 2022 - 6:04:02 PM
Long-term archiving on: : Saturday, November 12, 2016 - 7:44:45 PM

File

VersionFinal.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Martintxo Saralegi-Aranguren, Robert Wolak. Poincaré duality of the basic intersection cohomology of a Killing foliation. Monatshefte für Mathematik, Springer Verlag, 2016, 180, pp.145-166. ⟨10.1007/s00605-016-0882-4⟩. ⟨hal-00936000⟩

Share

Metrics

Record views

90

Files downloads

196