UPV/EHU - Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (Barrio Sarriena s/n, 48940 Leioa, Bizkaia
Campus d'Álava : Vice-Rectorado, San Antonio 41, 01005 Vitoria ;
campus de Biscaye et services centraux : Apdo 1397, 48080 Bilbao ;
campus de Guipúzcoa : Vice-Rectorado, Fuenterrabia 13-1° , 20006 San Sebastián - Spain)
Abstract : The purpose of this paper is to construct a compact symplectic (non-nilpotent) solvmanifold $M^{6} = \Gamma / G$ of dimension $6$ which does not admit Kähler structures. We show that the minimal model of $M^{6}$ is not formal by proving that there are non-trivial (quadruple) Massey products, however we remark that all the (triple) Massey products of $M^{6}$ vanish.
https://hal-univ-artois.archives-ouvertes.fr/hal-00870082
Contributor : Martintxo Saralegi-Aranguren <>
Submitted on : Monday, October 7, 2013 - 9:30:55 AM Last modification on : Saturday, December 26, 2020 - 1:46:08 PM Long-term archiving on: : Wednesday, January 8, 2014 - 4:17:37 AM
Marisa Fernandez, Manuel de Leon, Martin Saralegi-Aranguren. A six dimensional compact symplectic solvmanifold without Kähler structures. Osaka Journal of Mathematics, Osaka University, 1996, 33, pp.19-35. ⟨hal-00870082⟩