Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, Epiciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Journal articles

A six dimensional compact symplectic solvmanifold without Kähler structures

Abstract : The purpose of this paper is to construct a compact symplectic (non-nilpotent) solvmanifold $M^{6} = \Gamma / G$ of dimension $6$ which does not admit Kähler structures. We show that the minimal model of $M^{6}$ is not formal by proving that there are non-trivial (quadruple) Massey products, however we remark that all the (triple) Massey products of $M^{6}$ vanish.
Document type :
Journal articles
Complete list of metadata

Cited literature [13 references]  Display  Hide  Download
Contributor : Martintxo Saralegi-Aranguren Connect in order to contact the contributor
Submitted on : Monday, October 7, 2013 - 9:30:55 AM
Last modification on : Friday, May 6, 2022 - 6:04:02 PM
Long-term archiving on: : Wednesday, January 8, 2014 - 4:17:37 AM


Publisher files allowed on an open archive


  • HAL Id : hal-00870082, version 1



Marisa Fernandez, Manuel de Leon, Martintxo Saralegi-Aranguren. A six dimensional compact symplectic solvmanifold without Kähler structures. Osaka Journal of Mathematics, Osaka University, 1996, 33, pp.19-35. ⟨hal-00870082⟩



Record views


Files downloads