
HAL Id: hal-00868108
https://hal.science/hal-00868108

Submitted on 1 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reasoning from Last Conflict(s) in Constraint
Programming

Christophe Lecoutre, Lakhdar Saïs, Sébastien Tabary, Vincent Vidal

To cite this version:
Christophe Lecoutre, Lakhdar Saïs, Sébastien Tabary, Vincent Vidal. Reasoning from Last Conflict(s)
in Constraint Programming. Artificial Intelligence Journal (AIJ), 2009, 173 (18), pp.1592-1614. �hal-
00868108�

https://hal.science/hal-00868108
https://hal.archives-ouvertes.fr

Reasoning from Last Conflict(s)

in Constraint Programming

Christophe Lecoutre1 and Lakhdar Säıs1

and Sébastien Tabary1 and Vincent Vidal2

1 CRIL-CNRS UMR 8188

Université Lille-Nord de France, Artois

rue de l’université

SP 16, F-62307 Lens, France

{lecoutre,sais,tabary}@cril.fr

2 ONERA-DCSD

2, avenue Édouard Belin, BP 4025

F-31055 Toulouse Cedex 4
Vincent.Vidal@onera.fr

Abstract

Constraint programming is a popular paradigm to deal with combina-
torial problems in artificial intelligence. Backtracking algorithms, applied
to constraint networks, are commonly used but suffer from thrashing, i.e.
the fact of repeatedly exploring similar subtrees during search. An ex-
tensive literature has been devoted to prevent thrashing, often classified
into look-ahead (constraint propagation and search heuristics) and look-
back (intelligent backtracking and learning) approaches. In this paper, we
present an original look-ahead approach that allows to guide backtrack
search toward sources of conflicts and, as a side effect, to obtain a behav-
ior similar to a backjumping technique. The principle is the following:
after each conflict, the last assigned variable is selected in priority, so long
as the constraint network cannot be made consistent. This allows us to
find, following the current partial instantiation from the leaf to the root
of the search tree, the culprit decision that prevents the last variable from
being assigned. This way of reasoning can easily be grafted to many vari-
ations of backtracking algorithms and represents an original mechanism
to reduce thrashing. Moreover, we show that this approach can be gen-
eralized so as to collect a (small) set of incompatible variables that are
together responsible for the last conflict. Experiments over a wide range
of benchmarks demonstrate the effectiveness of this approach in both con-
straint satisfaction and automated artificial intelligence planning.

1

1 Introduction

The backtracking algorithm (BT) is a central algorithm for solving instances
of the constraint satisfaction problem (CSP). A CSP instance is represented
by a constraint network, and solving it usually involves finding one solution or
proving that none exists. BT performs a depth-first search, successively instan-
tiating the variables of the constraint network in order to build a solution, and
backtracking, when necessary, in order to escape from dead-ends. Many works
have been devoted to improve its forward and backward phases by introducing
look-ahead and look-back schemes. The forward phase consists of the process-
ing to perform when the algorithm must instantiate a new variable. One has
to decide which variable assignment to perform and which propagation effort
to apply. The backward phase consists of the processing to perform when the
algorithm must backtrack after encountering a dead-end. One has to decide
how far to backtrack and, potentially, what to learn from the dead-end.

The relationship between look-ahead and look-back schemes has been the
topic of many studies. Typically, all the efforts made by researchers to propose
and experiment sophisticated look-back and look-ahead schemes are related to
thrashing. Thrashing is the fact of repeatedly exploring the same (fruitless)
subtrees during search. Sometimes, thrashing can be prevented by the use
of an appropriate search heuristic or by an important propagation effort, and
sometimes, it can be explained by some bad choices made earlier during search.

Early in the 90’s, the Forward-Checking (FC) algorithm, which maintains
during search a partial form of a property called arc consistency (which allows
to identify and remove some inconsistent values), associated with the dom vari-
able ordering heuristic [19] and the look-back Conflict-directed BackJumping
(CBJ) technique [32], was considered as the most efficient approach to solve
CSP instances. Then, Sabin and Freuder [34] (re-)introduced the MAC algo-
rithm which fully maintains arc consistency during search, while simply using
chronological backtracking. This algorithm was shown to be more efficient than
FC and FC-CBJ, and CBJ was considered as useless to MAC, especially, when
associated with a good variable ordering heuristic [4].

Then, it became unclear whether both paradigms were orthogonal, i.e. coun-
terproductive one to the other, or not. First, incorporating CSP look-back tech-
niques (such as CBJ) to the “Davis-Putnam” procedure for the propositional
satisfiability problem (SAT) renders the solution of many large instances derived
from real-world problems easier [2]. Second, while it is confirmed by theoretical
results [9] that the more advanced the forward phase is, the more useless the
backward phase is, some experiments on hard, structured problems show that
adding CBJ to MAC can still present significant improvements. Third, refining
the look-back techniques [18, 1, 23] by associating a so-called eliminating expla-
nation (or conflict set) with every value rather than with every variable gives
to the search algorithm a more powerful backjumping capability. The empirical
results in [1, 23] show that MAC can be outperformed by algorithms embedding
such look-back techniques.

More recently, the adaptive heuristic dom/wdeg has been introduced [6].

2

This heuristic is able to orientate backtrack search towards inconsistent or hard
parts of a constraint network by weighting constraints involved in conflicts. As
search progresses, the weight of constraints difficult to satisfy becomes more
and more important, and this particularly helps the heuristic to select variables
appearing in the hard parts of the network. It does respect the fail-first principle:
“To succeed, try first where you are most likely to fail” [19]. The new conflict-
directed heuristic dom/wdeg is a very simple way to reduce thrashing [6, 20, 26].

Even with an efficient look-ahead technique, there still remains situations
where thrashing occurs. Consequently, one can still be interested in looking
for the reason of each encountered dead-end as finding the ideal ordering of
variables is intractable in practice. A dead-end corresponds to a sequence of
decisions (variable assignments) that cannot be extended to a solution. A dead-
end is detected after enforcing a given property (e.g. arc consistency), and the
set of decisions in this sequence is called a nogood. It may happen that a subset
of decisions of the sequence forms a conflict, i.e. is a nogood itself. It is then
relevant (to prevent thrashing) to identify such a conflict set and to consider its
most recent decision called the culprit decision. Indeed, once such a decision
has been identified, we know that it is possible to safely backtrack up to it
– this is the role of look-back techniques such as CBJ and DBT1 (Dynamic
Backtracking) [18].

In this paper, an extended revised version of [27], we propose a general
scheme to identify a culprit decision from any sequence of decisions leading to a
dead-end through the use of a pre-established set of variables, called testing-set.
The principle is to determine the largest prefix of the sequence, from which it is
possible to instantiate all variables of the testing-set without yielding a domain
wipe-out2, when enforcing a given consistency. One simple policy that can be en-
visioned to instantiate this general scheme is to consider, after each encountered
conflict, the variable involved in the last taken decision as the unique variable
in the testing-set. This is what we call last-conflict based reasoning (LC).

LC is an original approach that allows to (indirectly) backtrack to the cul-
prit decision of the last encountered dead-end. To achieve it, the last assigned
variable X before reaching a dead-end becomes in priority the next variable
to be selected as long as the successive assignments that involve it render the
network inconsistent. In other words, considering that a backtracking algorithm
maintains a consistency φ (e.g. arc consistency) during search, the variable or-
dering heuristic is violated, until a backtrack to the culprit decision occurs and
a singleton φ-consistent value for X is found (i.e. a value can be assigned to X
without immediately leading to a dead-end after applying φ).

We show that LC can be generalized by successively adding to the current
testing-set the variable involved in the last detected culprit decision. The idea
is to build a testing-set that may help backtracking higher in the search tree.
With this mechanism, our intention is to identify a (small) set of incompatible
variables, involved in decisions of the current branch, with many interleaved

1Strictly speaking, DBT does not backtrack but simply discards the culprit decision.
2By domain wipe-out, we mean a domain that becomes empty.

3

irrelevant decisions. LC allows to avoid the useless exploration of many subtrees.
Interestingly enough, contrary to sophisticated backjumping techniques, our

approach can be very easily grafted to any backtrack search algorithm with
a simple array (only a variable for the basic use of LC) as additional data
structure. Also, this approach can be efficiently exploited in different application
domains3. In particular, the experiments that we have conducted with respect
to constraint satisfaction and automated planning [17] demonstrate the general
effectiveness of last-conflict based reasoning.

The paper is organized as follows. After some preliminary definitions (Sec-
tion 2), we introduce the principle of nogood identification through testing-sets
(Section 3). Then, we present a way of reasoning based on the exploitation of
the last encountered conflict (Section 4) as well as its generalization to several
conflicts (Section 5). Next, we provide (Section 6) the results of a vast exper-
imentation that we have conducted with respect to two domains: constraint
satisfaction and automated planning, before some conclusions and prospects.

2 Technical Background

A constraint network (CN) P is a pair (X ,C) where X is a finite set of n
variables and C a finite set of e constraints. Each variable X ∈ X has an
associated domain, denoted by dom(X), which contains the set of values al-
lowed for X. Each constraint C ∈ C involves an ordered subset of variables of
X , called scope of C and denoted by scp(C), and has an associated relation,
denoted by rel(C), which contains the set of tuples allowed for its variables.
The arity of a constraint is the number of variables it involves. A constraint is
binary if its arity is 2, and non-binary if its arity is strictly greater than 2. A
binary constraint network is a network only involving binary constraints while
a non-binary constraint network is a network involving at least one non-binary
constraint.

A solution to a constraint network is the assignment of a value to each vari-
able such that all the constraints are satisfied. A constraint network is said
to be satisfiable if and only if it admits at least one solution. The Constraint
Satisfaction Problem (CSP) is the NP-hard task of determining whether a given
constraint network is satisfiable or not. A CSP instance is then defined by a
constraint network, and solving it involves either finding one solution or proving
its unsatisfiability. To solve a CSP instance, the constraint network is processed
using inference or search methods [12, 25]. In the context of many search algo-
rithms and some inference algorithms, decisions must be taken. Even if other
forms of decisions exist (e.g. domain splitting), we introduce the classical ones:

Definition 1. Let P = (X ,C) be a constraint network. A decision δ on P
is either an assignment X = a (also called a positive decision) or a refutation
X 6= a (also called a negative decision) where X ∈X and a ∈ dom(X).

3It has also been implemented in the WCSP (Weighted CSP) platform toulbar2 (see http:

//carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro).

4

The variable involved in a decision δ is denoted by var(δ). Of course, ¬(X =
a) is equivalent to X 6= a and ¬(X 6= a) is equivalent to X = a. When decisions
are taken, one obtains simplified constraint networks, i.e. networks with some
variables whose domain has been reduced.

Definition 2. Let P be a constraint network and ∆ be a set of decisions on P .
P |∆ is the constraint network obtained from P such that:

• for every positive decision X = a ∈ ∆, all values but a are removed from
dom(X), i.e. dom(X) becomes dom(X) ∩ {a};

• for every negative decision X 6= a ∈ ∆, a is removed from dom(X), i.e.
dom(X) becomes dom(X) \ {a}.

In the following two subsections, we introduce some background about the
inference (consistency enforcing) and search methods to which we will refer later.

2.1 Consistencies

Usually, the domains of the variables of a given constraint network are reduced
by removing inconsistent values, i.e. values that cannot occur in any solution.
In particular, it is possible to filter domains by considering some properties of
constraint networks. These properties are called domain-filtering consistencies
[11], and generalized arc consistency (GAC) remains the central one. By ex-
ploiting consistencies (and more generally, inference approaches), the problem
can be simplified (and even, sometimes solved) while preserving solutions.

Given a consistency φ, a constraint network P is said to be φ-consistent if and
only if the property φ holds on P . Enforcing a domain-filtering consistency φ on
a constraint network means taking into account inconsistent values (removing
them from domains) identified by φ in order to make the constraint network
φ-consistent. The new obtained constraint network, denoted by φ(P), is called
the φ-closure4 of P . If there exists a variable with an empty domain in φ(P)
then P is clearly unsatisfiable, denoted by φ(P) = ⊥.

Given an ordered set {X1, . . . , Xk} of k variables and a k-tuple τ = (a1, . . . , ak)
of values, ai will be denoted by τ [i] and also τ [Xi] by abuse of notation. If C is
a k-ary constraint such that scp(C) = {X1, . . . , Xk}, then the k-tuple τ is said
to be:

• an allowed tuple of C iff τ ∈ rel(C);

• a valid tuple of C iff ∀X ∈ scp(C), τ [X] ∈ dom(X);

• a support on C iff τ is a valid allowed tuple of C.

A pair (X, a) with X ∈ X and a ∈ dom(X) is called a value (of P). A
tuple τ is a support for a value (X, a) on C if and only if X ∈ scp(C) and τ is
a support on C such that τ [X] = a.

4We assume here that φ(P) is unique. This is the case for usual consistencies [3].

5

Definition 3. Let P be a constraint network.

• A value (X, a) of P is generalized arc-consistent, or GAC-consistent, iff
for every constraint C involving X, there exists a support for (X, a) on C.

• A variable X of P is GAC-consistent iff ∀a ∈ dom(X), (X, a) is GAC-
consistent.

• P is GAC-consistent iff every variable of P is GAC-consistent.

For binary constraint networks, generalized arc consistency is simply called
arc consistency (AC). To enforce (G)AC on a given constraint network, many
algorithms have been proposed. For example, AC2001 [5] is an optimal generic
algorithm that enforces AC on binary constraint networks: its worst-case time
complexity is O(ed2) where e is the number of constraints and d is the greatest
domain size.

On the other hand, many other domain-filtering consistencies have been in-
troduced and studied in the literature. Singleton arc consistency (SAC) [10] is
one such consistency which is stronger than AC: it means that SAC can identify
more inconsistent values than AC. SAC guarantees that enforcing arc consis-
tency after performing any variable assignment does not show unsatisfiability,
i.e., does not entail a domain wipe-out. Note that to simplify, whether a given
constraint network P is binary or non-binary, the constraint network obtained
after enforcing (generalized) arc consistency on P will be denoted by GAC (P).

Definition 4. Let P be a constraint network.

• A value (X, a) of P is singleton arc-consistent, or SAC-consistent, iff
GAC (P |X=a) 6= ⊥.

• A variable X of P is SAC-consistent iff ∀a ∈ dom(X), (X, a) is SAC-
consistent.

• P is SAC-consistent iff every variable of P is SAC-consistent.

More generally, considering any domain-filtering consistency φ, singleton φ-
consistency can be defined similarly to SAC. For example, a value (X, a) of P
is singleton φ-consistent if and only if φ(P |X=a) 6= ⊥.

2.2 Backtrack Search Algorithms

MAC [34] is the search algorithm which is considered as the most efficient generic
complete approach to solve CSP instances. It simply maintains (generalized) arc
consistency after each taken decision. A dead-end is encountered if the current
network involves a variable with an empty domain (i.e. a domain wipe-out).
When mentioning MAC, it is important to indicate which branching scheme is
employed. Indeed, it is possible to consider binary (2-way) branching or non-
binary (d-way) branching. These two schemes are not equivalent as it has been
shown that binary branching is more powerful (to refute unsatisfiable instances)

6

than non-binary branching [21]. With binary branching, at each step of the
search, a pair (X, a) is selected where X is an unassigned variable and a a
value in dom(X), and two cases are considered: the assignment X = a and the
refutation X 6= a. The MAC algorithm using binary branching can then be seen
as building a binary tree. During search, i.e. when the tree is being built, we
can make the difference between an opened node, for which only one case has
been considered, and a closed node, for which both cases have been considered
(i.e. explored). Classically, MAC always starts by assigning variables before
refuting values.

The order in which variables are assigned by a backtrack search algorithm
has been recognized as a key issue for a long time. Using different variable
ordering heuristics to solve the same CSP instance can lead to drastically differ-
ent results in terms of efficiency. In this paper, we focus on some representative
variable ordering heuristics. The well-known dynamic heuristic dom [19] se-
lects, at each step of the search, one of the variables with the smallest domain
size. To break ties, which correspond to sets of variables that are considered
as equivalent by the heuristic, one can use the dynamic degree of each variable,
which corresponds to the number of constraints involving it as well as (at least)
another unassigned variable. This is the heuristic called bz [7]. By directly
combining domain sizes and dynamic variable degrees, one obtains dom/ddeg
[4] which can substantially improve the search performance on some problems.
Finally, in [6], the heuristic dom/wdeg has been introduced. The principle is to
associate with each constraint of the problem a counter which is incremented
whenever the constraint is involved in a dead-end. Hence, wdeg that refers
to the weighted degree of a variable corresponds to the sum of the weights of
the constraints involving this variable as well as (at least) another unassigned
variable.

On the other hand, two well-known non-chronological backtracking algo-
rithms are conflict-directed backjumping (CBJ) [32] and dynamic backtracking
(DBT) [18]. The idea of these look-back algorithms is to jump back to a variable
assignment that must be reconsidered as it is suspected to be the most recent
reason (culprit) of the dead-end. While BT systematically backtracks to the
previously assigned variable, CBJ and DBT can identify a meaningful culprit
decision by exploiting eliminating explanations. Of course, these different tech-
niques can be combined; we obtain for example MAC-CBJ [33] and MAC-DBT
[23].

3 Nogood Identification through Testing-sets

In this section, we present a general approach to identify a nogood from a so-
called dead-end sequence of decisions through a testing-set which corresponds
to a pre-established set of variables. The principle is to determine the largest
prefix of the sequence from which it is possible to instantiate all variables of the
testing-set without yielding a domain wipe-out when enforcing a consistency.
The objective is to identify a nogood, smaller than the one corresponding to the

7

dead-end sequence, by carefully selecting the testing-set.
First, we formally introduce the notion of nogoods. Our definition includes

both positive and negative decisions as in [14, 24].

Definition 5. Let P be a constraint network and ∆ be a set of decisions on P .

• ∆ is a nogood of P iff P |∆ is unsatisfiable.

• ∆ is a minimal nogood of P iff ∄∆′ ⊂ ∆ such that ∆′ is a nogood of P .

In some cases, a nogood can be obtained from a sequence of decisions. Such
a sequence is called a dead-end sequence.

Definition 6. Let P be a constraint network and Σ = 〈δ1, . . . , δi〉 be a sequence
of decisions on P . Σ is said to be a dead-end sequence of P iff {δ1, . . . , δi} is a
nogood of P .

Next, we introduce the notions of culprit decision and culprit subsequence.
The culprit decision of a dead-end sequence Σ = 〈δ1, . . . , δi〉 wrt a testing-
set S of variables and a consistency φ is the rightmost decision δj in Σ such
that 〈δ1, . . . , δj〉 cannot be extended by instantiating all variables of S, without
detecting an inconsistency with φ. More formally, it is defined as follows:

Definition 7. Let P = (X ,C) be a constraint network, Σ = 〈δ1, . . . , δi〉 be a
sequence of decisions on P , φ be a consistency and S = {X1, . . . , Xr} ⊆X .

• A pivot of Σ wrt φ and S is a decision δj ∈ Σ such that ∃a1 ∈ dom(X1),
. . . ,∃ar ∈ dom(Xr) | φ(P |{δ1,...,δj−1,¬δj ,X1=a1,...,Xr=ar}) 6= ⊥.

• The rightmost pivot subsequence of Σ wrt φ and S is either the empty se-
quence 〈〉 if there is no pivot of Σ wrt φ and S, or the sequence 〈δ1, . . . , δj〉
where δj is the rightmost pivot of Σ wrt φ and S.

If Σ is a dead-end sequence then the rightmost pivot (if it exists) of Σ wrt φ
and S is called the culprit decision of Σ wrt φ and S, and the rightmost pivot
subsequence of Σ wrt φ and S is called the culprit subsequence of Σ wrt φ and
S. S is called a testing-set.

Note that a variable may be involved both in a decision of the sequence Σ
and in the testing-set S. For example, Σ may contain the negative decision
X 6= a while X being in S; X still has to be assigned (with a value different
from a). Intuitively, one can expect that a culprit subsequence corresponds to
a nogood. This is stated by the following proposition.

Proposition 1. Let P = (X ,C) be a constraint network, Σ = 〈δ1, . . . , δi〉 be a
dead-end sequence of P , φ be a consistency and S ⊆X be a testing-set. The set
of decisions contained in the culprit subsequence of Σ wrt φ and S is a nogood
of P .

8

Proof. Let S = {X1, . . . , Xr} ⊆X be the testing-set and let 〈δ1, . . . , δj〉 be the
(non-empty) culprit subsequence of Σ. Let us demonstrate by induction that
for all integers k such that j ≤ k ≤ i, the following hypothesis H(k) holds:

H(k): {δ1, . . . , δk} is a nogood
First, let us show that H(i) holds. We know that {δ1, . . . , δi} is a nogood by hy-
pothesis, since Σ is a dead-end sequence. Then, let us show that, for j < k ≤ i,
if H(k) holds then H(k − 1) also holds. As k > j and H(k) holds, we know
that {δ1, . . . , δk−1, δk} is a nogood. Furthermore, δk is not a pivot of Σ (since
k > j and δj is the culprit decision of Σ). Hence, by Definition 7, we know
that ∀a1 ∈ dom(X1), . . . ,∀ar ∈ dom(Xr), φ(P |{δ1,...,δk−1,¬δk,X1=a1,...,Xr=ar}) =
⊥. As a result, the set {δ1, . . . , δk−1,¬δk} is a nogood. By resolution [30],
from {δ1, . . . , δk−1, δk} and {δ1, . . . , δk−1,¬δk} being nogoods, we deduce that
{δ1, . . . , δk−1} is a nogood. So, H(k − 1) holds. For an empty culprit sub-
sequence, we can easily adapt the previous reasoning to deduce that ∅ is a
nogood.

It is important to note that the new identified nogood may correspond to
the original one. This is the case when the culprit decision of a sequence Σ =
〈δ1, . . . , δi〉 is δi. On the other hand, when the culprit subsequence of Σ is empty,
this means that P is unsatisfiable.

At this stage, one may wonder how Proposition 1 can be used in practice.
When a conflict is encountered during a backtrack search, this means that a
nogood has been identified: it corresponds to the set of decisions taken all along
the current branch. One can then imagine to detect smaller nogoods using
Proposition 1 in order to “backjump” in the search tree. There are as many
ways to achieve that task as different testing-sets. The backjumping capability
will depend upon the policy adopted to define the testing-sets. Different policies
can thus be introduced to identify the source of the conflicts and so to reduce
thrashing (as discussed in Section 4.2).

4 Reasoning from the Last Conflict

From now on, we consider a backtrack search algorithm (e.g. MAC) that uses a
binary branching scheme and embeds an inference operator enforcing a consis-
tency φ at each node of the search tree. One simple policy that can be applied to
instantiate the general scheme presented in the previous section is to consider,
after each encountered conflict (i.e. each time an inconsistency is detected after
enforcing φ, which emphasizes a dead-end sequence), the variable involved in
the last taken decision as forming the current testing-set. This is what we call
last-conflict based reasoning (LC).

4.1 Principle

We first introduce the notion of LC-subsequence. It corresponds to a culprit
subsequence identified by last-conflict based reasoning.

9

Definition 8. Let P be a constraint network, Σ = 〈δ1, . . . , δi〉 be a dead-end
sequence of P and φ be a consistency. The LC-subsequence of Σ wrt φ is the
culprit subsequence of Σ wrt φ and {Xi} where Xi = var(δi). The testing-set
{Xi} is called the LC-testing-set of Σ.

In other words, the LC-subsequence of a sequence of decisions Σ (leading to
an inconsistency) ends with the most recent decision such that, when negated,
there exists a value that can be assigned, without yielding an inconsistency via φ,
to the variable involved in the last decision of Σ. Note that the culprit decision
δj of Σ may be a negative decision and, also, the last decision of Σ. If j = i,
this simply means that we can find another value in the domain of the variable
involved in the last decision of Σ which is compatible with all other decisions of
Σ. More precisely, if δi is the culprit decision of Σ and δi is a negative decision
Xi 6= ai, then we necessarily have φ(P |{δ1,...,δi−1,Xi=ai}) 6= ⊥. On the other
hand, if δi is the culprit decision of Σ and δi is a positive decision Xi = ai then
there exists a value a′

i 6= ai in dom(Xi) such that φ(P |{δ1,...,δi−1,Xi 6=ai,Xi=a′
i
}) 6=

⊥.
LC allows identification of nogoods as shown by the following proposition.

Proposition 2. Let P be a constraint network, Σ be a dead-end sequence of P
and φ be a consistency. The set of decisions contained in the LC-subsequence

X
j 6=

a
j

⊥

X
j
=

a j

X
i-1 6=

a
i
−

1

X
i 6=

a
i

X
i-1

=
a i-1

Xi

Xi

Xi

LC1

LC1-testing-set = {Xi}

X
i
=

a i

Figure 1: Reasoning from the last conflict illustrated with a partial search tree.
A consistency φ is maintained at each node. A triangle labelled with a variable
X and drawn using a solid base line (resp. a dotted base line) represents the
fact that no (resp. a) singleton φ-consistent value exists for X.

10

of Σ wrt φ is a nogood of P .

Proof. Let δi be the last decision of Σ and Xi = var(δi). From Definition 8,
the LC-subsequence of Σ wrt φ is the culprit subsequence of Σ wrt φ and {Xi}.
We deduce our result from Proposition 1 with S = {Xi}.

Note that the set of decisions contained in an LC-subsequence may not be
a minimal nogood. Importantly, after each conflict encountered in a search
tree, an LC-subsequence can be identified so as to safely backjump to its last
decision. More specifically, the identification and exploitation of such nogoods
can be easily embedded into a backtrack search algorithm thanks to a simple
modification of the variable ordering heuristic. In practice, last-conflict based
reasoning will be exploited only when a dead-end is reached from an opened node
of the search tree, that is to say, from a positive decision since when a binary
branching scheme is used, positive decisions are taken first. It means that LC
will be used if and only if δi (the last decision of the sequence mentioned in
Definition 8) is a positive decision. To implement LC, it is then sufficient (i)
to register the variable whose assignment to a given value directly leads to an
inconsistency, and (ii) always to prefer this variable in subsequent decisions (so
long as it is unassigned) over the choice proposed by the underlying heuristic
– whatever heuristic is used. Notice that LC does not require any additional
space cost.

Figure 1 illustrates last-conflict based reasoning. The leftmost branch on
this figure corresponds to the positive decisions X1 = a1, . . ., Xi = ai, such that
Xi = ai leads to a conflict. With φ denoting the consistency maintained during
search, we have: φ(P |X1=a1,...,Xi=ai

) = ⊥. At this point, Xi is registered by
LC for future use, i.e. the testing-set is {Xi}, and ai is removed from dom(Xi),
i.e. Xi 6= ai. Then, instead of pursuing the search with a new selected variable,
Xi is chosen to be assigned with a new value. In our illustration, this leads
once again to a conflict, this value is removed from dom(Xi), and the process
loops until all values are removed from dom(Xi), leading to a domain wipe-
out (symbolized by a triangle labelled with Xi whose base is drawn using a
solid line). The algorithm then backtracks to the assignment Xi−1 = ai−1,
going to the right branch Xi−1 6= ai−1. As Xi is still recorded by LC, it is
selected in priority, and all values of dom(Xi) are proved here to be singleton
φ-inconsistent. The algorithm finally backtracks to the decision Xj = aj , going
to the right branch Xj 6= aj . Then, as {Xi} is still an active LC-testing-set, Xi

is preferred again and the values of dom(Xi) are tested. But, as one of them
does not lead to a conflict (symbolized by a triangle labelled with Xi whose base
is drawn using a dotted line), the search can continue with a new assignment
for Xi. The variable Xi is then unregistered (the testing-set becomes empty),
and the choice for subsequent decisions is left to the underlying heuristic, until
the next conflict occurs.

As a more concrete example, consider a constraint network with the variables
{X0, X1, X2, X3, X4, X5, X6} and the constraints {X1 6= X4, X1 6= X5, X1 6=
X6, X4 6= X5, X4 6= X6, X5 6= X6}. Here, we have a clique of binary dis-equality

11

X
0

=
0

X
1

=
0

X
2

=
0

X
3

=
0

X
4

=
1

X
3

6=
0

X
4
6=

1

X
3

=
1

X
2 6=

0

X
3
6=

1

X
2
6=

1

X
4
6=

1

X
4

=
1

X
3

=
0

X
4
6=

1

X
3

6=
0

X
2

=
1

X
3

=
1

X
3
6=

1

X
4

=
1

X
1 6= 0

X
1

=
1

X
2

=
0

X
3

=
0

X
4

=
0

X
4
6=

0

X
3

6=
0

X
4

=
1

X
3

=
1

X
4

=
0

X
4
6=

0

X
3
6=

1

X
2 6=

0

X
2

=
1

X
2
6=

1

X
3

=
0

X
4

=
0

X
4
6=

1

X
4
6=

0
X
3

6=
0

X
3
6=

1

X
3

=
1

X
4

=
0

X
4
6=

0

X
1 6= 1

X
1

=
2

X
2

=
0

X
3

=
0

X
4

=
0

X
4
6=

0

X
3

6=
0

X
3

=
1

X
4

=
0

X
4
6=

0

X
3
6=

1

X
2 6=

0

X
2

=
1

X
3

=
0

X
4

=
0

X
4
6=

0

X
3

6=
0

X
3

=
1

X
4

=
0

X
4
6=

0

X
3
6=

1

X
2
6=

1

X
1
6=

2

X
0 6= 0

33 nodes

Figure 2: Search tree built by MAC (68 explored nodes).

X
0

=
0

X
1

=
0

X
2

=
0

X
3

=
0

X
4

=
1

X
3

6=
0

X
4
6=

1

X
4

=
1

X
4

=
1

X
1

=
1

X
1

=
1

X
0 6= 0

X
1 6=

0

X
2 6=

0

X
4

6=
0

X
4
6=

1

X
1
6=

1

X
1
6=

1

X
1 6= 0

X
4

=
0

X
1

=
0

X
0

=
1

X
2

=
0

X
3

=
0

X
4

=
1

X
0

=
1

X
4

=
1

X
4

=
1

X
1

=
1

X
4
6=

1

X
4
6=

1

X
4
6=

1

X
1
6=

1

X
0
6=

1

X
1
6=

1

X
2 6=

0

X
0 6=

1

X
3

6=
0

X
4

6=
0

X
1

=
1

X
4

=
0

X
4
6=

1

⇒

⇒

⇒

⇒

Figure 3: Search tree built by MAC-LC1 (21 explored nodes). Circled nodes
identify variables forming testing-sets. They point to grey areas where a culprit
subsequence is sought.

12

constraints composed of four variables {X1, X4, X5, X6}, the domain of each one
being {0, 1, 2}, and three variables {X0, X2, X3} involved in no constraint, the
domain of each one being {0, 1}. Even if the introduction of isolated variables
seems to be quite particular, it can be justified by the fact that it may happen
during search (after some decisions have been taken). This phenomenon, and
more generally the presence of several connected components, frequently occurs
when solving structured instances. Figure 2 depicts the search tree built by
MAC where variables and values are selected in lexicographic order, which is
used here to facilitate understanding of the example. In this figure, each leaf
corresponds to a direct failure, after enforcing arc consistency; MAC explores 68
nodes to prove the unsatisfiability of this problem. Figure 3 depicts the search
tree built by MAC-LC1 using the same lexicographic order, where LC1 denotes
the implementation of last-conflict based reasoning, as presented above. This
time, MAC-LC1 only explores 21 nodes. Indeed, reasoning from the last conflict
allows search to focus on the hard part of the network (i.e. the clique).

By using an operator that enforces φ to identify LC-subsequences as de-
scribed above, we obtain the following complexity result.

Proposition 3. Let P be a constraint network, φ be a consistency and Σ =
〈δ1, . . . , δi〉 be a dead-end sequence of P . The worst-case time complexity of
computing the LC-subsequence of Σ wrt φ is O(idγ) where γ is the worst-case
time complexity of enforcing φ.

Proof. The worst case happens when the computed LC-subsequence of Σ is
empty. In this case, this means that, for each decision, we check the singleton
φ-consistency of Xi. Checking the singleton φ-consistency of a variable corre-
sponds to at most d calls to an algorithm enforcing φ, where d is the greatest
domain size. Thus, the total worst-case time complexity is id times the com-
plexity of the φ-enforcing algorithm, denoted by γ. We obtain O(idγ).

When LC is embedded in MAC, we obtain the following complexity.

Corollary 1. Let P be a binary constraint network and Σ = 〈δ1, . . . , δi〉 be
a dead-end sequence of decisions that corresponds to a branch built by MAC.
Assuming that the current LC-testing-set is {var(δi)}, the worst-case time com-
plexity, for MAC-LC1, to backtrack up to the last decision of the LC-subsequence
of Σ wrt AC is O(end3).

Proof. First, we know, as positive decisions are performed first by MAC, that
the number of opened nodes in a branch of the search tree is at most n. Second,
for each closed node, we do not have to check the singleton arc consistency of
Xi since we have to directly backtrack. So, using an optimal AC algorithm in
O(ed2), we obtain an overall complexity in O(end3).

4.2 Preventing thrashing using LC

Thrashing is a phenomenon that deserves to be carefully studied because an
algorithm subject to thrashing can be very inefficient. We know that whenever

13

a value is removed from the domain of a variable, it is possible to compute
an explanation of this removal by collecting the decisions (i.e. variable assign-
ments in our case) that entailed removing this value. By recording such so-called
eliminating explanations and exploiting this information, one can hope to back-
jump to a level where a culprit variable will be re-assigned, this way, avoiding
thrashing.

In some cases, no pertinent culprit variable(s) can be identified by a back-
jumping technique although thrashing occurs. For example, let us consider
some unsatisfiable instances of the queens-knights problem as proposed in [6].
When the queens subproblem and the knights subproblem are merged with-
out any interaction (there is no constraint involving both a queen variable and
a knight variable as in the qk-25-25-5-add instance), MAC combined with a
non-chronological backtracking technique such as CBJ or DBT is able to prove
the unsatisfiability of the problem from the unsatisfiability of the knights sub-
problem (by backtracking up to the root of the search tree). When the two
subproblems are merged with an interaction (queens and knights cannot be put
on the same square as in the qk-25-25-5-mul instance), MAC-CBJ and MAC-
DBT become subject to thrashing (when a standard variable ordering heuristic
such as dom, bz or dom/ddeg is used) because the last assigned queen variable
is considered as participating to the reason of the failure. The problem is that,
even if there exists different eliminating explanations for a removed value, only
the first one is recorded. One can still imagine to improve existing backjumping
algorithms by updating eliminating explanations, computing new ones [22] or
managing several explanations [35, 31]. However, this is far beyond the scope
of this paper.

Reasoning from the last conflict is a new way of reducing thrashing, while
still being a look-ahead technique. Indeed, guiding search to the last decision of
a culprit subsequence behaves similarly to using a form of backjumping to that
decision.

Table 1 illustrates the thrashing prevention capability of LC on the two in-
stances mentioned above. Clearly, MAC, MAC-CBJ and MAC-DBT cannot
prevent thrashing for the qk-25-25-5-mul instance as, within 2 hours, the in-
stance remains unsolved (even when other standard heuristics are used). On
the other hand, in about 1 minute, MAC-LC1 can prove the unsatisfiability of
this instance. The reason is that all values in the domain of knight variables are
singleton arc-inconsistent. When such a variable is reached, LC guides search
up to the root of the search tree.

5 A Generalization: Reasoning from Last Con-

flicts

A generalization of the last conflict policy, previously introduced, can now be
envisioned. As before, after each conflict, the testing-set is initially composed
of the variable involved in the last taken decision. However, it is also updated

14

Table 1: Cost of running variants of MAC with bz as variable ordering heuristic
(time-out is 2 hours)

Instance MAC MAC-CBJ MAC-DBT MAC-LC1

qk-25-25-5-

add

CPU > 2h 11.7 12.5 58.9
nodes − 703 691 10, 053

qk-25-25-5-

mul

CPU > 2h > 2h > 2h 66.6
nodes − − − 9, 922

each time a culprit decision is identified.

5.1 Principle

To define testing-sets, the policy previously introduced can be generalized as
follows. At each dead-end the testing-set initially consists, as before, of the
variable Xi involved in the most recent decision δi. When the culprit decision
δj is identified, the variable Xj involved in δj is included in the testing-set.
The new testing-set {Xi, Xj} may help backtracking nearer the root of the
search tree. Of course, this form of reasoning can be extended recursively. This
mechanism is intended to identify a (small) set of incompatible variables involved
in decisions of the current branch, although these may be interleaved with many
irrelevant decisions. We now formalize this approach before illustrating it.

Definition 9. Let P be a constraint network, Σ be a dead-end sequence of P and
φ be a consistency. We recursively define the kth LC-testing-set and the kth LC-
subsequence of Σ wrt φ, respectively called LCk-testing-set and LCk-subsequence
and denoted by Sk and Σk, as follows:

• For k = 1, S1 and Σ1 respectively correspond to the LC-testing-set of Σ
and the LC-subsequence of Σ wrt φ.

• For k > 1, if Σk−1 = 〈〉, then Sk = Sk−1 and Σk = Σk−1. Otherwise,
Sk = Sk−1∪{Xk−1} where Xk−1 is the variable involved in the last decision
of Σk−1 and Σk is the rightmost pivot subsequence of Σk−1 wrt φ and Sk.

The following proposition is a generalization of Proposition 2, and can be
demonstrated by induction on k.

Proposition 4. Let P be a constraint network, Σ be a dead-end sequence of P
and φ be a consistency. For any k ≥ 1, the set of decisions contained in Σk,
which is the LCk-subsequence of Σ wrt φ, is a nogood of P .

Proof. Let us demonstrate by induction that for all integers k ≥ 1, the following
hypothesis, denoted H(k), holds:

H(k): the set of decisions contained in Σk is a nogood

15

First, let us show that H(1) holds. From Proposition 2, we know that the set
of decisions contained in Σ1 is a nogood. Then, let us show that, for k > 1, if
H(k − 1) holds then H(k) also holds. As k > 1 and H(k − 1) holds, we know
that the set of decisions contained in Σk−1 is a nogood and, consequently, Σk−1

is a dead-end sequence. Using Definition 7, we know that the rightmost pivot
subsequence Σk is a culprit subsequence. Hence, using Proposition 1, we deduce
that the set of decisions contained in Σk is a nogood.

For any k > 1 and any given dead-end sequence Σ, LCk will denote the
process that consists in computing the LCk-subsequence Σk of Σ. When com-
puting Σk, we may have Σk 6= Σk−1 meaning that the original nogood has been
reduced k times (and Sk is composed of k distinct variables). However, a fixed
point may be reached at a level 1 ≤ j < k, meaning that Σj = Σj+1 and either
j = 1 or Σj 6= Σj−1. The fixed point is reached when the current testing set
is composed of j + 1 variables: no new variable can be added to the testing set
because the identified culprit decision is the last decision of the current dead-end
sequence.

In practice, we will use the generalized version of LC in the context of a
backtrack search. If a fixed point is reached at a level j < k, the process of last-
conflict based reasoning is stopped and the choice of subsequent decisions is left
to the underlying heuristic until the next conflict occurs. On the other hand,
we will restrict pivots to be positive decisions, only. Indeed, it is not relevant
to consider a negative decision X 6= a as a pivot because it would consist in
building a third branch within the MAC search tree identical to the first one.
The subtree under the opposite decision X = a has already been refuted, since
positive decisions are taken first.

As an illustration, Figure 4 depicts a partial view of a search tree. The left-
most branch corresponds to a dead-end sequence of decisions Σ. By definition,
the LC1-testing-set of Σ is only composed of the variable Xi (which is involved
in the last decision of Σ). So, the algorithm assigns Xi in priority in order to
identify the culprit decision of Σ (and the LC1-subsequence). In our illustration,
no value in dom(Xi) is found to be singleton φ-consistent until the algorithm
backtracks up to the positive decision Xj = aj . This decision is then identified
as the culprit decision of Σ, and so, in order to compute the LC2-subsequence,
the LC2-testing-set is built by adding Xj to the LC1-testing-set. From now,
Xi and Xj will be assigned in priority. The LC2-subsequence is identified when
backtracking to the decision Xk = ak. Indeed, from Xk 6= ak, it is possible to
instantiate the two variables of the LC2-testing-set. Then, Xk is added to the
LC2-testing-set, but as the variables of this new testing-set can now be assigned,
last-conflict reasoning is stopped because a fixed point is reached (at level 2)
and search continues as usual.

Let us consider again the example introduced in Section 4.1 and the search
trees (see Figures 2 and 3) built by MAC and MAC-LC1. This time, Figure 5
represents the search tree built by MAC-LC2. We recall that with MAC-LC2,
the testing-sets may contain up to two variables. Here, after the first conflict
(leftmost branch), the testing-set is initialized with {X4} and when the singleton

16

X
k 6=

a
k

X
j 6=

a
j

⊥

X
j
=

a j

X
k
=

a k

X
i-1 6=

a
i
−

1

X
i 6=

a
i

X
j-1 6=

a
j-1

X
i-1

=
a i-1

X
j-1

=
a j-1

Xi

Xi

Xi

Xj

Xi

Xj

Xi

Xj

Xk

LC1

LC2

LC2-testing-set= {Xi, Xj}LC1-testing-set= {Xi}

X
i
=

a i

Figure 4: Generalized reasoning from the last conflict illustrated with a partial
search tree. A consistency φ is maintained at each node. A triangle labelled
with a variable X and drawn using a solid base line (resp. a dotted base line)
represents the fact that no (resp. a) singleton φ-consistent value exists for X.

17

X
0

=
0

X
1

=
0

X
2

=
0

X
3

=
0

X
4

=
1

X
3

6=
0

X
4
6=

1

X
4

=
1

X
4

=
1

X
1

=
1

X
1

=
1

X
0 6= 0

X
1 6=

0

X
2 6=

0

X
4

6=
0

X
4
6=

1

X
1
6=

1

X
4

=
0

X
4

=
0

X
1

=
1

X
4
6=

1

X
1
6=

1

X
1
6=

1

X
1

=
0

X
4

=
1

X
1
6=

0

X
1

=
0

X
1
6=

0

X
4
6=

2

X
4

6=
1

X
4

6=
0

X
4

=
2

LC1

LC2

LC1-testing-set= {X4} LC2-testing-set= {X4, X1}

Figure 5: Search Tree built by MAC-LC2 (16 explored nodes).

arc-consistent value (X4, 0) is found (after decisions X0 = 0 and X1 6= 0),
the testing-set becomes {X4, X1}. As any instantiation of these two variables
systematically leads to a failure (when enforcing arc consistency), MAC-LC2

is able to efficiently prove the unsatisfiability of this instance: MAC-LC2 only
explores 16 nodes (to be compared with the 68 and 21 explored nodes of MAC
and MAC-LC1).

5.2 A Small Example

Let us also introduce a toy problem, called the pawns problem, which illustrates
the capability of generalized last-conflict reasoning to circumscribe the difficult
parts of problem instances. The pawns problem consists in putting p pawns
on squares of a chessboard of size n × n such that no two pawns can be put
on the same square and the distance between two of them must be strictly less
than p − 1. Here, in our modelling, each square of a chessboard is numbered
from 1 to n × n and the distance between two squares is the absolute value of
the difference of their numbers. Then, p variables represent the pawns of the
problem and their domain represent the n × n squares of the chessboard. For
p ≥ 2, this problem is unsatisfiable (since it is equivalent to put p pawns on
p − 1 squares). Interestingly, we can show that, during a search performed by
MAC, we may have to instantiate up to p− 3 variables.

We can merge this problem with the classical queens problem: pawns and
queens cannot be put on the same square. Instances of this new queens-pawns
problem are then denoted by qp-n-p with p the number of pawns and n the
number of queens. This problem (like the queens-knights problem) produces
a lot of thrashing. Indeed, in the worst case, the unsatisfiability of the pawns
problem must be proved for each solution of the queens problem. Using LCp−2,

18

T
ab

le
2:

R
esu

lts
ob

tain
ed

w
ith

M
A

C
-L

C
k

w
ith

k
∈

[0,7],
u
sin

g
bz

an
d

d
o
m

/
w
d
eg

a
s

h
eu

ristics,
on

th
e

qu
een

s-pa
w
n
s

p
rob

lem
.

bz
LC0 LC1 LC2 LC3 LC4 LC5 LC6 LC7

qp-12-4
CPU 815 1.19 0.98 1.09 1.25 1.22 1.12 1.12
nodes 6, 558K 2, 713 2, 719 2, 719 2, 719 2, 719 2, 719 2, 719

qp-12-5
CPU 2, 620 3.16 2.66 2.24 2.95 2.87 2.33 2.39
nodes 28M 13, 181 13, 140 12, 523 12, 523 12, 523 12, 523 12, 523

qp-12-6
CPU time-out 471 11.0 10.7 9.39 9.61 9.69 10.2
nodes 5, 271K 66, 701 75, 812 67, 335 67, 335 67, 335 67, 335

qp-12-7
CPU time-out time-out 74.5 469 62.7 55.9 54.8 55.2
nodes 584K 5, 144K 432K 418K 418K 418K

qp-12-8
CPU time-out time-out time-out 5, 587 710 669 385 389
nodes 63M 6, 003K 5, 820K 2, 978K 2, 978K

qp-12-9
CPU time-out time-out time-out time-out time-out 6, 944 time-out 3, 126
nodes 67M 24M

dom/wdeg
LC0 LC1 LC2 LC3 LC4 LC5 LC6 LC7

qp-12-4
CPU 1.12 1.34 1.15 2.07 1.19 1.58 1.19 1.13
nodes 4, 273 3, 530 3, 255 2, 719 2, 719 2, 719 2, 719 2, 719

qp-12-5
CPU 2.36 2.77 2.95 2.13 2.33 2.57 2.39 2.33
nodes 12, 847 14, 497 16, 064 12, 523 12, 523 12, 523 12, 523 12, 523

qp-12-6
CPU 9.88 12.4 13.4 10.2 9.39 9.21 9.55 9.28
nodes 79, 191 80, 794 94, 225 70, 832 67, 335 67, 335 67, 335 67, 335

qp-12-7
CPU 67.0 80.2 89.0 71.8 66.2 54.9 55.4 51.8
nodes 568K 544K 638K 515K 478K 418K 418K 418K

qp-12-8
CPU 744 589 687 554 538 459 390 364
nodes 6, 240K 4, 083K 4, 897K 3, 961K 3, 841K 3, 390K 2, 978K 2, 978K

qp-12-9
CPU 5, 884 4, 887 5, 651 4, 743 4, 722 4, 328 3, 689 2, 947
nodes 49M 34M 39M 33M 32M 31M 27M 24M

19

one can expect to identify the pawn incompatible variables and to use them as
LCp−2-testing-set.

Table 2 presents the results obtained with MAC equipped with LC reasoning
(LCk with k ∈ [1, 7]) or not (LC0) on instances qp-12-p with p ranging from 4 to
9. The size of the chessboard was set to 12× 12 and the time limit was 2 hours.
As expected, to solve an instance qp-12-p, it is better to use LCp−2 as variables
that correspond to pawns can be collected by this approach. Note that if we
use LCk with k ≥ p − 2, whatever k is, the number of nodes does not change
(significantly). If k < p− 2, solving the problem is more difficult: one can only
identify a subset of the p− 2 incompatible variables.

5.3 Implementation Details

Algorithm 1: solve()

Input: a constraint network P
Output: true iff P is satisfiable

P ← φ(P)1

if P = ⊥ then2

return false3

if ∀X ∈ P, |dom(X)| = 1 then4

return true5

X ← selectV ariable(P)6

a← selectV alue(X)7

if solve(P |X=a) then8

return true9

if candidate = null ∧ |testingSet| < k ∧X /∈ testingSet then10

candidate← X11

return solve(P |X 6=a)12

Reasoning from last conflicts can be implemented by slight modifications of a
classical backtrack search algorithm (see function solve described in Algorithm
1) and its associated variable selection procedure (see function selectV ariable,
Algorithm 2). The function solve works the following way. First, an inference
operator establishing a consistency φ such as AC is applied on a constraint
network P (line 1). To simplify the presentation, we suppose here that φ is a
domain filtering consistency at least as strong as the partial form of arc con-
sistency established (maintained) by the FC algorithm [19]. If the resulting
constraint network is trivially inconsistent (a variable has an empty domain),
solve returns false (lines 2-3). Else, if the domain of all variables in P is re-
duced to only one value, a solution is found and solve returns true (lines 4-5).
If P is not proved inconsistent by φ and there remains several possible val-
ues for at least one variable, a new decision has to be taken. A variable X

20

Algorithm 2: selectV ariable()

Input: a constraint network P
Output: a variable X to be used for branching

foreach X ∈ testingSet do1

if |dom(X)| > 1 then2

return X3

if candidate 6= null ∧ |dom(candidate)| > 1 then4

X ← candidate5

testingSet← testingSet ∪ {X}6

else7

X ← variableOrderingHeuristic.selectV ariable(P))8

testingSet← ∅9

candidate← null10

return X11

is thus selected by a call to selectV ariable (line 6), and a value a is picked
from dom(X) by a call to selectV alue. Two branches are then successively
explored by recursive calls to solve: the assignment X = a (lines 8-9) and
the refutation X 6= a (line 12). Between these two calls, two lines have been
introduced (lines 10-11) in order to manage LC. We will discuss them below.
Apart from these two lines, most of the modifications lie in selectV ariable,
Algorithm 2. Classically, this function selects the best variable to be assigned
thanks to the given variable ordering heuristic implemented by the function
variableOrderingHeuristic.selectV ariable. The algorithm we propose here
modifies this selection mechanism to reflect the different possible states of search:

1. Some variables have been collected in a testing-set, and we look for an
instantiation of them which is consistent with the current node of the
search tree. Variables of this testing-set are then preferred over all other
variables (lines 1-3), until the domains of the variables in the testing-set
are all reduced to singletons. The order in which the variables of the
testing-set are picked is not crucial, as the maximal size of a testing-set is
limited by k and is kept relatively low in practice. This step can be viewed
as a complete local exploration of a small subtree until the variables of
the testing-set are all assigned (their domains are reduced to singletons).

2. When all variables of a testing-set are assigned, there may exist a candi-
date variable to be added to the testing-set (lines 4-5). In that case, the
variable candidate corresponds to a variable whose domain contains more
than one value. This candidate has been pointed out in the function solve
(lines 10-11), just before the refutation of a given value from its domain,
under the following conditions:

• Firstly, there was no candidate yet (candidate = null). This happens

21

when a conflict has been encountered under the assignment X = a in
the left branch: variables of the testing-set are going to be explored
in the right branch under the refutation X 6= a, and X will then be
potentially added later to the testing-set.

• Secondly, the maximal size k of a testing-set has not been reached
(|testingSet| < k).

• Thirdly, X must not be already present in the testing-set (X /∈
testingSet). X ∈ testingSet may happen when X has just been
entered into the testing-set and search focuses on it.

A candidate will enter the testing-set only if an instantiation of the vari-
ables currently in the testing-set is found. If no instantiation of the testing-
set can be found, the candidate is not added to the testing-set and will
be replaced by another one after having backtracked higher in the search
tree.

3. If an instantiation of the testing-set has already been found (possibly, the
testing-set being empty) and if there is no candidate or the candidate is
already assigned, then the classical heuristic chooses a new variable to
assign, and the testing-set is emptied.

6 Experiments

In order to show the practical interest of the approach described in this paper, we
have conducted an extensive experimentation on a cluster of Xeon 3.0GHz with
1GiB of RAM under Linux, with respect to two research domains: constraint
satisfaction and automated artificial intelligence planning. To do this, we have
respectively equipped the constraint solver Abscon [28] and the planner CPT
[37] with last-conflict based reasoning.

6.1 Results with the CSP solver Abscon

We first present the results obtained with the solver Abscon. For our experi-
mentation, we have used MAC (using chronological backtracking) and studied
the impact of LC wrt various variable ordering heuristics (dom/ddeg, dom/wdeg,
bz). Recall that LC0 denotes MAC alone and LCk denotes the approach that
consists in computing LCk-subsequences, i.e. the generalized last-conflict based
approach where at most k variables are collected. Performance is measured in
terms of the number of visited nodes (nodes) and the CPU time in seconds. Im-
portantly, all CSP instances that have been experimented come from the second
constraint solver competition5 where they can be downloaded.

First, we experimented LC1 and LC2 on different series of random problems.
Seven classes of binary instances near crossover points have been generated

5http://www.cril.univ-artois.fr/CPAI06/

22

T
ab

le
3:

R
esu

lts
ob

tain
ed

w
ith

M
A

C
,

M
A

C
-L

C
1

an
d

M
A

C
-L

C
2

on
ran

d
om

in
stan

ces
(tim

e-ou
t

is
20

m
in

u
tes).

dom/ddeg dom/wdeg bz
LC0 LC1 LC2 LC0 LC1 LC2 LC0 LC1 LC2

Random instances from Model D (100 instances per series)

〈40, 8, 753, 0.1〉
CPU 12.1 60.8 85.3 10.5 55.6 78.8 12.1 59.8 83.4
nodes 45, 388 232K 326K 45, 393 241K 322K 45, 388 232K 326K

〈40, 11, 414, 0.2〉
CPU 12.8 44.6 59.7 14.6 54.2 68.9 16.0 47.4 60.8
nodes 58, 443 203K 266K 70, 560 253K 312K 73, 004 213K 280K

〈40, 16, 250, 0.35〉
CPU 12.2 33.3 44.1 14.5 35.9 48.2 21.0 41.2 47.6
nodes 59, 448 158K 215K 72, 556 182K 237K 104K 200K 233K

〈40, 25, 180, 0.5〉
CPU 16.7 27.3 41.2 17.0 34.7 41.6 46.7 44.9 44.2
nodes 82, 836 134K 205K 81, 921 173K 200K 238K 227K 225K

〈40, 40, 135, 0.65〉
CPU 11.8 15.3 23.2 11.0 16.1 21.5 52.21 22.65 26.02
nodes 52, 814 70, 113 110K 47, 665 72, 547 101K 242K 102K 123K

〈40, 80, 103, 0.8〉
CPU 13.9 10.9 16.2 6.45 9.62 14.0 129 (5) 15.3 19.5
nodes 49, 923 39, 926 67, 513 20, 994 34, 375 57, 227 487K 57, 115 74, 583

〈40, 180, 84, 0.9〉
CPU 21.7 15.8 26.3 8.48 11.9 19.8 111 (3) 16.4 21.1
nodes 55, 403 39, 281 79, 280 17, 348 29, 047 62, 003 317K 40, 407 61, 516

Random forced instances from Model RB (5 instances per series)

frb35-17
CPU 4.30 5.01 5.52 3.26 4.94 7.39 6.39 5.35 5.89
nodes 15, 844 18, 983 21, 439 10, 160 18, 816 29, 564 24, 872 20, 518 22, 952

frb40-19
CPU 32.7 111 64.2 25.3 98.7 126 47.3 106 128
nodes 135K 463K 271K 103K 452K 564K 196K 447K 549K

geom (100 instances per series)

geom
CPU 10.2 24.5 32.8 6.92 27.4 34.3 41.6 (1) 26.6 33.8
nodes 30, 847 76, 706 103K 21, 712 85, 865 115K 179K 85, 396 106K

23

T
ab

le
4:

R
esu

lts
o
b
tain

ed
w

ith
M

A
C

,
M

A
C

-L
C

1
an

d
M

A
C

-L
C

2
on

acad
em

ic
an

d
p
attern

ed
in

sta
n
ces

(tim
e-ou

t
is

20
m

in
u
tes).

dom/ddeg dom/wdeg bz
LC0 LC1 LC2 LC0 LC1 LC2 LC0 LC1 LC2

Aim (24 instances per series)

aim-100
CPU 636 (10) 30.2 35.6 0.60 0.54 0.53 647 (12) 50.4 50.2
nodes 9, 150K 428K 489K 3, 106 2, 485 2, 330 9, 488K 718K 718K

aim-200
CPU 977 (18) 737 (13) 740 (13) 5.82 4.75 4.85 985 (18) 740 (14) 738 (14)
nodes 12M 8, 455K 8, 598K 64, 798 52, 857 55, 387 12M 9, 071K 9, 165K

Composed instances (10 instances per series)

25-1-40
CPU 1, 200 (10) 0.51 0.54 0.51 0.53 0.49 0.47 0.42 0.48
nodes 13M 74 74 161 74 74 4 4 4

25-10-20
CPU 27.1 0.64 0.63 0.58 0.60 0.58 229 (1) 0.77 0.74
nodes 272K 161 160 200 159 159 2, 599K 220 198

Coloring instances (22 instances per series)

dsjc/myciel CPU 6.88 4.50 6.77 13.6 10.2 10.7 105 9.54 7.52
. . . nodes 41, 020 32, 046 38, 065 150K 110K 108K 1, 500K 93, 070 75, 256

Sadeh job-shop instances (10 instances per series)

e0ddr1-10
CPU 960 (8) 548 (4) 501 (4) 511 (4) 445 (3) 498 (4) 720 (6) 600 (5) 492 (4)
nodes 9, 811K 5, 412K 4, 591K 4, 588K 4, 164K 4, 615K 6, 487K 5, 608K 4, 647K

enddr1-10
CPU 600 (5) 142 (1) 124 (1) 123 (1) 124 (1) 124 (1) 360 (3) 259 (2) 243 (2)
nodes 6, 535K 1, 345K 1, 191K 1, 101K 1, 127K 1, 162K 3, 162K 2, 274K 2, 270K

Ehi instances (100 instances per series)

ehi-85-297
CPU 475 (13) 0.91 0.62 0.87 0.43 0.43 301 (8) 0.69 0.53
nodes 529K 557 281 1, 292 146 146 362K 311 172

ehi-90-315
CPU 601 (23) 1.17 0.65 0.85 0.44 0.48 402 (14) 0.70 0.53
nodes 616K 674 264 1, 210 140 140 431K 282 155

QCP (15 instances per series)

qcp-10-67
CPU 98.2 0.56 0.50 0.47 0.52 0.47 80.3 0.54 0.49
nodes 1, 038K 885 366 171 169 168 897K 854 369

qcp-15-120
CPU 736 (7) 704 (7) 637 (6) 34.4 36.5 35.2 727 (7) 729 (7) 628 (6)
nodes 3, 377K 3, 594K 3, 334K 232K 254K 241K 3, 907K 3, 845K 3, 491K

24

T
ab

le
5:

R
esu

lts
o
b
tain

ed
w

ith
M

A
C

,
M

A
C

-L
C

1
an

d
M

A
C

-L
C

2
on

real-w
orld

in
stan

ces
(tim

e-ou
t

is
20

m
in

u
tes

p
er

in
stan

ce).

dom/ddeg dom/wdeg bz
LC0 LC1 LC2 LC0 LC1 LC2 LC0 LC1 LC2

FAPP instances (11 instances per series)

fapp02
CPU 564 (5) 8.03 7.71 9.14 7.51 7.42 318 (2) 7.20 7.04
nodes 688K 582 415 966 369 337 244K 291 270

fapp03
CPU 115 (1) 7.83 7.74 7.48 7.79 7.74 115 (1) 8.41 8.09
nodes 9, 694 153 208 168 181 147 11, 023 237 211

fapp04
CPU 225 (2) 9.60 9.79 12.0 9.15 20.2 658 (6) 96.8 42.5
nodes 123K 297 364 738 319 1, 693 397K 17, 771 3, 836

RLFAP Graphs (12 and 14 instances per series)

graphMods
CPU 800 (8) 315 (3) 51.5 2.28 3.80 1.50 1, 000 (10) 303 (3) 2.53
nodes 1, 585K 858K 140K 5, 509 14, 601 2, 208 2, 350K 1, 642K 3, 185

graphs
CPU 1.35 1.37 1.37 1.19 1.28 1.26 86.8 (1) 1.59 1.46
nodes 313 313 313 313 313 313 521K 497 378

Radar surveillance (50 instances per series)

radar-8-24-3-2
CPU 408 (17) 1.70 0.48 0.18 0.17 0.16 210 (8) 0.84 0.22
nodes 4, 651K 14, 699 3, 085 122 106 107 2, 214K 5, 804 657

radar-8-30-3-0
CPU 423 (17) 24.8 (1) 8.03 0.21 0.19 0.21 101 (4) 0.94 1.92
nodes 4, 727K 141K 43, 635 219 209 213 1, 001K 6, 067 10, 217

25

T
ab

le
6:

R
esu

lts
ob

tain
ed

w
ith

M
A

C
-L

C
k

w
ith

k
∈

[0,4],
u
sin

g
bz

an
d

d
o
m

/
w
d
eg

a
s

h
eu

ristics,
on

acad
em

ic
an

d
real-w

orld
in

stan
ces.

bz dom/wdeg
LC0 LC1 LC2 LC3 LC4 LC0 LC1 LC2 LC3 LC4

cc-7-7-3
CPU 154 36.1 46.3 42.0 41.7 23.6 30.3 26.6 27.1 30.9
nodes 732K 171K 217K 198K 194K 131K 174K 146K 144K 165K

cc-9-9-2
CPU 89.9 4.94 4.68 5.15 5.13 1.01 1.00 0.96 0.98 0.99
nodes 216K 10, 823 10, 823 10, 823 10, 823 3, 387 3, 457 3, 457 3, 457 3, 457

e0ddr2-1
CPU time-out time-out 463 374 379 110 281 191 272 724
nodes 3, 052K 2, 471K 2, 757K 812K 2, 024K 1, 329K 2, 085K 5, 319K

enddr1-10
CPU time-out 186 30.0 34.9 23.9 20.4 33.6 31.9 28.1 24.5
nodes 1, 472K 254K 282K 210K 141K 268K 261K 233K 184K

fapp02-0250-5
CPU time-out 7.82 7.00 7.23 7.26 7.99 8.80 8.37 8.48 8.57
nodes 323 323 323 323 851 685 632 638 638

fapp04-0300-5
CPU time-out 753 344 264 315 18.8 9.74 9.67 10.5 14.2
nodes 97, 127 32, 394 23, 368 28, 227 1, 734 353 332 318 1, 078

langford-3-12
CPU 25.7 207 383 370 344 23.2 120 129 108 115
nodes 157K 1, 186K 2, 086K 1, 837K 1, 548K 90, 122 441K 433K 416K 384K

langford-4-12
CPU 6.34 29.2 54.2 61.4 49.4 5.22 17.6 18.6 17.2 16.2
nodes 18, 608 94, 941 162K 172K 124K 12, 437 36, 742 39, 112 35, 844 33, 769

qcp-15-120-12
CPU time-out time-out 611 14.3 94.9 0.55 0.52 0.51 0.52 0.45
nodes 3, 206K 84, 304 477K 782 660 505 531 531

qcp-20-187-11
CPU time-out time-out time-out time-out time-out 3.91 1.46 1.40 1.25 1.13
nodes 15, 992 4, 992 5, 083 3, 860 3, 753

qa-5
CPU 9.94 3.62 3.13 1.96 3.17 1.42 2.79 2.19 3.1 2.13
nodes 93, 677 31, 272 24, 995 16, 107 22, 937 10, 533 19, 482 14, 189 14, 990 14, 295

qa-6
CPU time-out 290 401 195 420 130 120 143 263 81.4
nodes 1, 980K 2, 407K 1217K 2, 689K 769K 676K 760K 1, 450K 431K

graph9-f10
CPU time-out time-out 7.49 5.54 4.22 1.53 1.52 1.49 1.43 1.63
nodes 14, 661 15, 520 14, 950 2, 041 2, 693 2, 754 2, 477 3, 716

scen11
CPU 558 7.80 2.32 1.87 2.61 1.87 7.47 5.90 4.86 2.60
nodes 2, 456K 31, 793 5, 134 4, 103 5, 854 4, 540 35, 028 29, 465 21, 120 4, 948

ruler-34-9-a3
CPU 24.5 14.2 13.8 15.2 16.8 13.2 9.30 9.57 10.7 12.5
nodes 18, 230 8, 011 8, 296 9, 254 11, 066 9, 144 7, 740 8, 647 10, 671 12, 767

ruler-34-9-a4
CPU 83.8 20.5 35.5 34.2 30.1 16.7 17.5 26.3 24.1 28.9
nodes 55, 129 11, 159 22, 480 22, 908 20, 840 8, 723 9, 163 15, 645 15, 714 20, 536

tsp-20-366
CPU 12.6 11.3 6.09 6.06 4.61 1.67 1.77 2.32 1.35 1.15
nodes 26, 777 24, 013 12, 286 10, 444 7, 564 2, 029 2, 261 3, 063 1, 457 1, 175

tsp-25-190
CPU 78.0 29.3 213 88.7 272 66.6 118 175 205 64.9
nodes 147K 56, 091 336K 133K 404K 83, 894 133K 232K 246K 83, 311

26

Table 7: Number of instances from the second constraint solver competition
solved within 20 minutes, given by category.

bz dom/ddeg dom/wdeg
LC0 LC1 LC0 LC1 LC0 LC1

Categories of structured instances
ACAD (#242) 136 146 123 136 132 138
BOOL (#660) 306 336 312 342 388 390
PATT (#846) 379 425 390 431 451 455
QRND (#400) 378 400 290 400 400 400
REAL (#400) 291 319 292 322 326 330
Category of random instances
RAND (#745) 520 490 535 498 539 493

Total (#3, 293) 2, 010 2, 116 1, 942 2, 129 2, 236 2, 206

following Model D [36, 16]. For each class 〈n, d, e, t〉, the number of variables n
is 40, the domain size d lies between 8 and 180, the number of constraints e lies
between 753 and 84 (so the density is between 0.96 and 0.1) and the tightness
t lies between 0.1 and 0.9. Here, tightness t is the probability that a pair of
values is disallowed by a relation. The first class 〈40, 8, 753, 0.1〉 corresponds
to dense instances involving constraints of low tightness whereas the seventh
one 〈40, 180, 84, 0.9〉 corresponds to sparse instances involving constraints of
high tightness. It is important to note that a significant sampling of domain
sizes, densities and tightnesses is provided. Two series of random instances
generated using Model RB [39] and forced to be satisfiable as described in [38]
were also tested. We finally experimented the series of “geometric” instances
proposed by R. Wallace. Constraint relations are generated in the same way as
for homogeneous random CSP instances, but instead of a density parameter, a
”distance” parameter is used.

The results that we have obtained are given in Table 3. The number of
unsolved instances within 20 minutes is given into brackets, in this case the
CPU time must be considered as a lower bound. Broadly, using LC on random
instances is penalizing because these instances do not contain any structure.
MAC alone is better than LC1, itself being better than LC2. However on series
geom and classes 〈40, 80, 103, 0.8〉 and 〈40, 180, 84, 0.9〉, this is less obvious. In-
deed, one can consider that such instances have a little structure. This is true
for the geom instances by construction, and also for the random instances of the
two classes 〈40, 80, 103, 0.8〉 and 〈40, 180, 84, 0.9〉 since their constraint graph is
sparse.

Tables 4 and 5 show the practical interest of LC1 and LC2 on structured in-
stances. Table 4 reports results on classical series of academic instances from the
literature: graph coloring, job-shop scheduling, quasi-group completion prob-
lem, aim and ehi SAT instances converted to CSP. Table 5 reports results on

27

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 1 2 3 4 5 6 7 8

(a) scen11-f1

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 1 2 3 4 5 6 7 8

(b) scen11-f2

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1 2 3 4 5 6 7 8

(c) scen11-f3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8

(d) scen11-f4

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 1 2 3 4 5 6 7 8

(e) scen11-f5

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8

(f) scen11-f6

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8

(g) scen11-f7

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8

(h) scen11-f8

Figure 6: CPU time (y-axis) to solve the RLFAP instances of series scen11-fX

with MAC-LCk, with k (x-axis) ranging from 0 to 8. The variable ordering
heuristic is dom/ddeg and the time-out to solve each instance is 48 hours.

28

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 0 1 2 3 4 5 6 7 8

(a) scen11-f1

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 0 1 2 3 4 5 6 7 8

(b) scen11-f2

 1350

 1400

 1450

 1500

 1550

 1600

 1650

 1700

 1750

 1800

 1850

 0 1 2 3 4 5 6 7 8

(c) scen11-f3

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 0 1 2 3 4 5 6 7 8

(d) scen11-f4

 140

 160

 180

 200

 220

 240

 260

 280

 0 1 2 3 4 5 6 7 8

(e) scen11-f5

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 1 2 3 4 5 6 7 8

(f) scen11-f6

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 0 1 2 3 4 5 6 7 8

(g) scen11-f7

 2.5

 3

 3.5

 4

 4.5

 5

 0 1 2 3 4 5 6 7 8

(h) scen11-f8

Figure 7: CPU time (y-axis) to solve the RLFAP instances of series scen11-fX

with MAC-LCk, with k (x-axis) ranging from 0 to 8. The variable ordering
heuristic is dom/wdeg and the time-out to solve each instance is 48 hours.

29

 1

 10

 100

 1000

 1 10 100 1000

M
A

C
-L

C
1

MAC

Figure 8: Pairwise comparison (CPU time) on the 3, 293 instances used as
benchmarks of the second constraint solver competition. The variable ordering
heuristic is dom/ddeg and the time-out to solve an instance is 20 minutes.

 1

 10

 100

 1000

 1 10 100 1000

M
A

C
-L

C
1

MAC

Figure 9: Pairwise comparison (CPU time) on the 3, 293 instances used as
benchmarks of the second constraint solver competition. The variable ordering
heuristic is dom/wdeg and the time-out to solve an instance is 20 minutes.

30

series of instances issued from real-world problems:

• The frequency assignment problem with polarization constraints (FAPP)
is an optimization problem that was part of the ROADEF’2001 challenge6.
In this problem, there are constraints concerning frequencies and polariza-
tion of radio links. Progressive relaxation of these constraints is explored:
the relaxation level is between 0 (no relaxation) and 10 (maximum relax-
ation). Progressive relaxation produces eleven CSP instances from any
single original FAPP optimization instance.

• The radio link frequency assignment problem (RLFAP) is the task of as-
signing frequencies to a set of radio links satisfying a large number of
constraints and using as few distinct frequencies as possible. In 1993, the
CELAR (the French “centre d’electronique de l’armement”) built a suite
of simplified versions of radio link frequency assignment problems starting
from data on a real network [8]. Series of binary RLFAP instances are
identified as either scen or graph.

• The Swedish institute of computer science (SICS) has proposed a model of
realistic radar surveillance7. The problem is to adjust the signal strength
(from 0 to s) of a given number of fixed radars wrt six geographic sectors.
Each cell of the geographic area of size p× p must be covered exactly by
k radar stations, except for a number i of forbidden cells that must not
be covered. Sets of 50 instances with non-binary constraints have been
generated artificially; each series is denoted by radar-p-k-s-i.

Tables 4 and 5 show that the efficiency of MAC combined with a standard
heuristic (i.e. dom/ddeg, bz) is increased when LC is used, both in terms of CPU
time and number of solved instances. LC2 is even better than LC1, especially on
job-shop and RLFAP series. These instances are structured and a blind search
(i.e. without analyzing the reasons of the conflicts) is subject to thrashing.
As expected, last-conflict reasoning allows us to reduce the appearance of this
phenomenon without modifying the general behavior of the heuristics. When
the heuristic dom/wdeg is used, the results are less impressive since this heuristic
already reduces thrashing.

In Table 6, we can observe the impact of LC on some representative instances
from the second constraint solver competition. Results are mentioned for LCk

with k ranging from 0 to 4, and the time limit was 1 hour. Once again, it
clearly appears that using LC with a standard heuristic greatly improves the
efficiency of the MAC algorithm. This is not always true when the dom/wdeg
heuristic is used for the reasons previously mentioned. Note that some of these
instances cannot be solved efficiently using a backjumping technique such as
CBJ or DBT combined with a standard heuristic. This aspect has been shown
in [26]. Broadly, LC2 and LC3 offer the best trade-off.

6http://uma.ensta.fr/conf/roadef-2001-challenge/
7www.ps.uni-sb.de/~walser/radar/radar.html

31

We have also focused on the most difficult real-world instances that are
currently available (see the results of the second and third constraint solver
competitions). These instances are unsatisfiable and belong to the RLFAP
series scen11-fX with X ∈ [1, 8]. Figures 6 and 7 depict the CPU time required
to solve these instances using LCk with k ranging from 0 to 8. Missing points
mean that unsatisfiability is not proved within 48 hours. For example, MAC
alone (LC0) with dom/ddeg cannot solve any instance of this series within 48
hours. On these difficult structured instances, CPU time generally decreases
with increasing values of k. This is particularly true for dom/ddeg (see Figure
6) but still observable with dom/wdeg (see Figure 7).

The overall results obtained on the full suite of instances used for the sec-
ond constraint solver competition are given in Table 7. Each line of the table
corresponds to a category of instances (academic, Boolean, patterned, . . .). For
each category, the number given between brackets represents the total number
of instances of this category, and we provide the number of solved instances
(within 20 minutes) using LC0 and LC1 and the heuristics bz, dom/ddeg and
dom/wdeg. Whatever the heuristic is used, LC1 allows to solve more instances
than LC0 on categories of structured instances (Academic, Boolean, Patterned,
QuasiRandom and Real). As previously mentioned (see Table 3), LC1 is not
very efficient to solve instances of the random category. Finally, Figures 8 and
9 depict the same results for dom/ddeg and dom/wdeg with scatter plots. Each
dot represents an instance and its coordinates are defined by: on the horizontal
axis, the CPU time required to solve the instance with MAC, and on the vertical
axis, the CPU time required to solve the instance with MAC-LC1. Many dots
are located on the right side of the graphs, which means that LC1 solves more
instances than LC0.

6.2 Results with the optimal temporal planner CPT

Reasoning from last-conflicts can be easily adapted to other research domains.
Here we discuss the adaptation of LC1 to automated Artificial Intelligence plan-
ning, more precisely planning using a STRIPS formulation [13, 17]. The classical
planning problem is the task of determining a sequence of actions (that is to
say a plan), allowing the evolution from an initial state of the world to a final
state satisfying a set of goals. A state is represented with a set of atoms, called
fluents. STRIPS actions, classically represented by a triple of sets of fluents –
preconditions, add effects, del effects – can make the current representation of
the world evolve from one state to another one. An action can be applied to
a state if its preconditions are satisfied into that state, and yields a new state
by removing its del effects and inserting its add effects. Planning problems are
defined using a representation language : PDDL [15], which has been developed
for the international planning competitions8 held every two years. The tempo-
ral planning problem is an extension of the classical planning paradigm, where
each action has a fixed execution time and allows some forms of concurrency

8http://ipc.icaps-conference.org

32

Table 8: Number of instances solved for planning domains (500 instances per
domain, time-out is 30 minutes) and total time for instances solved by both.

CPT
LC0 LC1 Both

BlocksWorld
#-instances 383 417 383

CPU 78, 333 42, 504 −

Depots
#-instances 338 401 338

CPU 40, 606 14, 978 −

DriverLog
#-instances 384 439 384

CPU 64, 704 14, 613 −

Logistics
#-instances 399 462 399

CPU 107, 552 45, 387 −

Rovers
#-instances 347 396 347

CPU 53, 245 26, 371 −

Satellite
#-instances 442 464 442

CPU 63, 406 41, 149 −

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

C
P

T
-L

C
1

CPT

Figure 10: Pairwise comparison (CPU time) on the 3, 000 instances from the
six planning domains tested in Table 8. The time-out to solve an instance is 30
minutes.

33

Table 9: CPU time (in seconds) required by CPT and CPT-LC1 to solve in-
stances from the fourth international planning competition.

CPT
LC0 LC1

PipesWorld/NoTankage-NonTemporal

p08-net1-b12-g7 0.58 0.76
p09-net1-b14-g6 174.00 121.00
p13-net2-b12-g3 2.94 5.71
p15-net2-b14-g4 527.96 1, 450.65
p17-net2-b16-g5 25.44 94.57
p21-net3-b12-g2 466.36 385.90
p24-net3-b14-g5 425.08 159.02

PipesWorld/NoTankage-Temporal-Deadlines-Compiled

p09-p09-net1-b14-g6-dl 127.29 0.47
p11-p11-net2-b10-g2-dl - 435.82
p13-p13-net2-b12-g3-dl - 79.13
p17-p17-net2-b16-g5-dl 189.30 -

Promela/Optical-Telegraph

p04-opt5 4.21 3.18
p05-opt6 12.58 7.81
p06-opt7 50.84 17.46
p07-opt8 177.78 39.33
p08-opt9 633.42 107.76
p09-opt10 - 277.54
p10-opt11 - 720.61
p11-opt12 - 1, 740.76

PSR/Small

p22-s37-n3-l3-f30 48.31 9.11
p31-s49-n4-l2-f30 312.82 282.06
p33-s51-n4-l2-f70 1.04 0.40
p35-s57-n5-l2-f30 1.33 0.69
p46-s97-n5-l2-f30 - 253.37
p47-s98-n5-l2-f50 4.63 1.90
p48-s101-n5-l3-f30 763.24 45.85

Satellite/Time

p08-pfile8 3.35 1.59
p09-pfile9 1.30 1.06
p10-pfile10 70.56 0.95
p14-pfile14 - 1, 563.55
p15-pfile15 - 1, 205.17
p17-pfile17 55.61 62.81
p18-pfile18 12.27 7.49

Satellite/Time-TimeWindows-Compiled

p04-pfile4 42.66 24.71
p07-pfile7 478.59 365.33
p08-pfile8 7.80 1.14
p09-pfile9 - 0.89
p17-pfile17 103.81 74.99
p18-pfile18 6.82 5.91

34

between non-conflicting actions.
The planner CPT [37] is an optimal temporal planning system which com-

bines a branching scheme based on Partial Order Causal Link (POCL) planning
with powerful and sound pruning rules implemented as constraints. It minimizes
the makespan of the plan, which is the overall execution time of that plan wrt
action durations and ordering relations between them. CPT competed in the op-
timal tracks of the fourth and fifth international planning competitions, where
it respectively got a second place and distinguished performance in temporal
domains. The key novelty in CPT is its formulation of a planning problem as a
constraint satisfaction problem involving the use of supports threats, precedence
relations and mutex threats, to deal with actions that are not yet included in a
partial plan. The adaptation of last-conflict reasoning (LC1) to this kind of plan-
ning system is quite immediate. The choice for the inclusion of new instances
of actions in a partial plan is expressed through support variables S(p, a) asso-
ciated to couples precondition p - action a, whose domain is the set of actions
that can produce the precondition p for the action a. The variable selection
heuristic is modified in the same way as in Abscon: the last support variable
involved in a conflict is selected in priority as long as a failure is detected.

Table 8 shows the results obtained with CPT on some series of problems from
the second and third international planning competitions (domains BlocksWorld,
Depots, DriverLog, Logistics, Rovers, Satellite). Some of these domains (Satellite

and Rovers) are also used in the fourth and fifth international planning competi-
tions. Each series contains 500 problems generated using the problem generators
implemented for the competitions, with diverse parameters. We have compared
standard CPT (noted CPT in the table) with CPT embedding last-conflict
reasoning (noted CPT-LC1 in the table). The time limit was 30 minutes per
instance and results have been compared in terms of number of solved instances
(#-intances) and cumulated CPU time for instances solved by both methods.
First note that CPT-LC1 solves more instances in all problem series. Indeed,
broadly, CPT-LC1 solves 286 instances that CPT cannot solve. Moreover, the
total time for solving instances of every series has been greatly improved.

Figure 10 depicts with a scatter plot the results described above. Each dot
represents an instance. The coordinates of this dot are defined by: on the
horizontal axis, the CPU time required to solve the instance with CPT and on
the vertical axis, the CPU time required to solve the instance with CPT-LC1.
CPT embedding last-conflict reasoning is clearly more efficient than standard
CPT. Indeed most of the dots are located under the diagonal, that is to say
solving a given instance with CPT-LC1 is most often faster than with CPT.
Moreover, note that many dots are located on the right hand side of the graph.
These dots represent instances solved by CPT-LC1 but not by CPT.

On instances from the fourth international planning competition9, the dif-
ference between CPT alone and CPT-LC1 is generally less significant. Table

9We have not included results from the fifth and sixth international planning competitions
because (1) generators for the fifth do not produce plain STRIPS problems and no generator
were available for the sixth, and (2) official instances are designed for suboptimal planners, so
we could not get very significant results (instances are either too easy or too difficult).

35

9 only provides results on instances for which there is a substantial difference
between the two approaches. On these instances, CPT-LC1 behaves generally
better than standard CPT.

7 Conclusion

In this paper, we have introduced the concept of reasoning from last conflicts
that can be regarded as an original look-ahead approach which allows to guide
search toward sources of conflicts. The principle is to select in priority the vari-
able involved in the last conflict (i.e. the last assignment that failed) as long as
the constraint network cannot be made consistent. This way of reasoning allows
to reduce thrashing by backtracking to the most recent identified culprit decision
of the last conflict and, as a consequence, simulates a backjumping effect by a
form of lazy identification of culprit decisions. A generalization of this reasoning
is also proposed, allowing the identification of more relevant culprit decisions
(located higher in the search tree). This mechanism computes small sets of hard
variables, called testing-sets, that are involved in decisions of the current branch
and interleaved with many other irrelevant decisions. Consequently, search is
improved by focusing on variables of testing-sets. Our method can be grafted
to any search algorithm based on a depth-first exploration without any addi-
tional cost in space. The interest of this approach has been shown in practice
by an extensive experimentation in both constraint satisfaction and automated
artificial intelligence planning.

In our approach, the variable ordering heuristic is violated, until a backtrack
to the culprit decision occurs and a singleton consistent value is found for each
variable of the testing-set. However, an alternative is not to consider the found
singleton consistent value as the next value to be assigned. In this case, the
approach becomes a pure inference technique which corresponds to (partially)
maintaining a singleton consistency (SAC, for example) on the variables of the
testing-set (and so involved in the last conflict). This would be related to the
“Quick Shaving” technique [29] whose principle is to check, when a backtrack
occurs at depth k, the consistency of values that were shavable (i.e. singleton
arc-inconsistent) at depth k + 1.

Acknowledgments

This paper has been supported by the CNRS, the “Planevo” project and the
“IUT de Lens”.

References

[1] F. Bacchus. Extending Forward Checking. In Proceedings of CP’00, pages
35–51, 2000.

36

[2] R.J. Bayardo and R.C. Shrag. Using CSP look-back techniques to solve
real-world SAT instances. In Proceedings of AAAI’97, pages 203–208, 1997.

[3] C. Bessiere. Constraint propagation. In Handbook of Constraint Program-
ming, chapter 3. Elsevier, 2006.

[4] C. Bessiere and J. Régin. MAC and combined heuristics: two reasons to
forsake FC (and CBJ?) on hard problems. In Proceedings of CP’96, pages
61–75, 1996.

[5] C. Bessiere, J.C. Régin, R. Yap, and Y. Zhang. An optimal coarse-grained
arc consistency algorithm. Artificial Intelligence, 165(2):165–185, 2005.

[6] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic
search by weighting constraints. In Proceedings of ECAI’04, pages 146–150,
2004.

[7] D. Brelaz. New methods to color the vertices of a graph. Communications
of the ACM, 22:251–256, 1979.

[8] B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J.P. Warners. Radio
Link Frequency Assignment. Constraints, 4(1):79–89, 1999.

[9] X. Chen and P. van Beek. Conflict-directed backjumping revisited. Journal
of Artificial Intelligence Research, 14:53–81, 2001.

[10] R. Debruyne and C. Bessiere. Some practical filtering techniques for the
constraint satisfaction problem. In Proceedings of IJCAI’97, pages 412–417,
1997.

[11] R. Debruyne and C. Bessiere. Domain filtering consistencies. Journal of
Artificial Intelligence Research, 14:205–230, 2001.

[12] R. Dechter. Constraint processing. Morgan Kaufmann, 2003.

[13] R. Fikes and N. Nilsson. STRIPS: A new approach to the application
of theorem proving to problem solving. Artificial Intelligence, 2:189–208,
1971.

[14] F. Focacci and M. Milano. Global cut framework for removing symmetries.
In Proceedings of CP’01, pages 77–92, 2001.

[15] M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing tem-
poral planning domains. Journal of Artificial Intelligence Research (JAIR),
20:61–124, 2003.

[16] I.P. Gent, E. MacIntyre, P. Prosser, B.M. Smith, and T. Walsh. Random
constraint satisfaction: flaws and structure. Constraints, 6(4):345–372,
2001.

37

[17] M. Ghallab, D. Nau, and P. Traverso. Automated Planning, Theory and
Practice. Morgann Kaufmann, 2004.

[18] M.L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence
Research, 1:25–46, 1993.

[19] R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for con-
straint satisfaction problems. Artificial Intelligence, 14:263–313, 1980.

[20] T. Hulubei and B. O’Sullivan. Search heuristics and heavy-tailed behaviour.
In Proceedings of CP’05, pages 328–342, 2005.

[21] J. Hwang and D.G. Mitchell. 2-way vs d-way branching for CSP. In Pro-
ceedings of CP’05, pages 343–357, 2005.

[22] U. Junker. QuickXplain: preferred explanations and relaxations for over-
constrained problems. In Proceedings of AAAI’04, pages 167–172, 2004.

[23] N. Jussien, R. Debruyne, and P. Boizumault. Maintaining arc-consistency
within dynamic backtracking. In Proceedings of CP’00, pages 249–261,
2000.

[24] G. Katsirelos and F. Bacchus. Generalized nogoods in CSPs. In Proceedings
of AAAI’05, pages 390–396, 2005.

[25] C. Lecoutre. Constraint networks: techniques and algorithms. ISTE/Wiley,
2009.

[26] C. Lecoutre, F. Boussemart, and F. Hemery. Backjump-based techniques
versus conflict-directed heuristics. In Proceedings of ICTAI’04, pages 549–
557, 2004.

[27] C. Lecoutre, L. Sais, S. Tabary, and V. Vidal. Last conflict-based reason-
ning. In Proceedings of ECAI’06, pages 133–137, 2006.

[28] C. Lecoutre and S. Tabary. Abscon 109: a generic CSP solver. In Proceed-
ings of the 2006 CSP solver competition, pages 55–63, 2007.

[29] O. Lhomme. Quick shaving. In Proceedings of AAAI’05, pages 411–415,
2005.

[30] D.G. Mitchell. Resolution and constraint satisfaction. In Proceedings of
CP’03, pages 555–569, 2003.

[31] S. Ouis, N. Jussien, and P. Boizumault. k-relevant explanations for con-
straint programming. In Proceedings of the workshop on User-Interaction in
Constraint Satisfaction (UICS’02) held with CP’02, pages 109–123, 2002.

[32] P. Prosser. Hybrid algorithms for the constraint satisfaction problems.
Computational Intelligence, 9(3):268–299, 1993.

38

[33] P. Prosser. MAC-CBJ: maintaining arc consistency with conflict-directed
backjumping. Technical report, Department of Computer Science, Univer-
sity of Strathclyde, 1995.

[34] D. Sabin and E.C. Freuder. Contradicting conventional wisdom in con-
straint satisfaction. In Proceedings of CP’94, pages 10–20, 1994.

[35] T. Schiex and G. Verfaillie. Stubborness: a possible enhancement for back-
jumping and nogood recording. In Proceedings of ECAI’94, pages 165–172,
1994.

[36] B.M. Smith and M.E. Dyer. Locating the phase transition in binary con-
straint satisfaction problems. Artificial Intelligence, 81:155–181, 1996.

[37] V. Vidal and H. Geffner. Branching and pruning: an optimal temporal
POCL planner based on constraint programming. Artificial Intelligence,
170(3):298–335, 2006.

[38] K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. Random constraint
satisfaction: easy generation of hard (satisfiable) instances. Artificial In-
telligence, 171(8-9):514–534, 2007.

[39] K. Xu and W. Li. Exact phase transitions in random constraint satisfaction
problems. Journal of Artificial Intelligence Research, 12:93–103, 2000.

39

