https://hal-univ-artois.archives-ouvertes.fr/hal-00714673Lefèvre, PascalPascalLefèvreLML - Laboratoire de Mathématiques de Lens - UA - Université d'ArtoisLi, DanielDanielLiLML - Laboratoire de Mathématiques de Lens - UA - Université d'ArtoisQueffélec, HervéHervéQueffélecLPP - Laboratoire Paul Painlevé - Université de Lille - CNRS - Centre National de la Recherche ScientifiqueRodriguez-Piazza, LuisLuisRodriguez-PiazzaDepartamento de Analisis MatematicoCompact composition operators on the Dirichlet space and capacity of sets of contact pointsHAL CCSD2012Bergman spaceBergman-Orlicz spacecomposition operatorDirichlet spaceHardy spaceHardy-Orlicz spacelogarithmic capacitySchatten classes[MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA]Li, Daniel2012-07-05 12:31:522023-03-02 17:50:072012-07-05 13:54:43enPreprints, Working Papers, ...https://hal-univ-artois.archives-ouvertes.fr/hal-00714673/documentapplication/pdf1In this paper, we prove that for every compact set of the unit disk of logarithmic capacity 0, there exists a Schur function both in the disk algebra and in the Dirichlet space such that the associated composition operator is in all Schatten classes (of the Dirichlet space), and for which the set of points whose image touches the unit circle is equal to this compact set. We show that for every bounded composition operator on the Dirichlet space and for every point of the unit circle, the logarithmic capacity of the set of point having this point as image is 0. We show that every compact composition operator on the Dirichlet space is compact on the gaussian Hardy-Orlicz space; in particular, it is in every Schatten class on the usual Hilbertian Hardy space. On the other hand, there exists a Schur function such that the associated composition operator is compact on the gaussian Hardy-Orlicz space, but which is not even bounded on the Dirichlet space. We prove that the Schatten classes on the Dirichlet space can be separated by composition operators. Also, there exists a Schur function such that the associated composition operator is compact on the Dirichlet space, but in no Schatten class.