Compact composition operators on the Dirichlet space and capacity of sets of contact points

Abstract : In this paper, we prove that for every compact set of the unit disk of logarithmic capacity 0, there exists a Schur function both in the disk algebra and in the Dirichlet space such that the associated composition operator is in all Schatten classes (of the Dirichlet space), and for which the set of points whose image touches the unit circle is equal to this compact set. We show that for every bounded composition operator on the Dirichlet space and for every point of the unit circle, the logarithmic capacity of the set of point having this point as image is 0. We show that every compact composition operator on the Dirichlet space is compact on the gaussian Hardy-Orlicz space; in particular, it is in every Schatten class on the usual Hilbertian Hardy space. On the other hand, there exists a Schur function such that the associated composition operator is compact on the gaussian Hardy-Orlicz space, but which is not even bounded on the Dirichlet space. We prove that the Schatten classes on the Dirichlet space can be separated by composition operators. Also, there exists a Schur function such that the associated composition operator is compact on the Dirichlet space, but in no Schatten class.
Type de document :
Pré-publication, Document de travail
2012
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal-univ-artois.archives-ouvertes.fr/hal-00714673
Contributeur : Daniel Li <>
Soumis le : jeudi 5 juillet 2012 - 12:31:52
Dernière modification le : mardi 3 juillet 2018 - 11:32:56
Document(s) archivé(s) le : samedi 6 octobre 2012 - 02:30:19

Fichiers

Dirichlet.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00714673, version 1
  • ARXIV : 1207.1232

Collections

Citation

Pascal Lefèvre, Daniel Li, Hervé Queffélec, Luis Rodriguez-Piazza. Compact composition operators on the Dirichlet space and capacity of sets of contact points. 2012. 〈hal-00714673〉

Partager

Métriques

Consultations de la notice

288

Téléchargements de fichiers

243