Infinitesimal Carleson property for weighted measures induced by analytic self-maps of the unit disk

Abstract : We prove that, for every $\alpha > -1$, the pull-back measure $\phi ({\cal A}_\alpha )$ of the measure $d{\cal A}_\alpha (z) = (\alpha + 1) (1 - |z|^2)^\alpha \, d{\cal A} (z)$, where ${\cal A}$ is the normalized area measure on the unit disk $\D$, by every analytic self-map $\phi \colon \D \to \D$ is not only an $(\alpha + 2)$-Carleson measure, but that the measure of the Carleson windows of size $\eps h$ is controlled by $\eps^{\alpha + 2}$ times the measure of the corresponding window of size $h$. This means that the property of being an $(\alpha + 2)$-Carleson measure is true at all infinitesimal scales. We give an application by characterizing the compactness of composition operators on weighted Bergman-Orlicz spaces.
Type de document :
Pré-publication, Document de travail
à paraître dans Complex Analysis and Operator Theory. 2012
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal-univ-artois.archives-ouvertes.fr/hal-00704738
Contributeur : Daniel Li <>
Soumis le : mercredi 6 juin 2012 - 10:48:41
Dernière modification le : mercredi 25 avril 2018 - 14:23:16
Document(s) archivé(s) le : vendredi 7 septembre 2012 - 02:26:54

Fichiers

contraction_CAOT.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00704738, version 1
  • ARXIV : 1206.1178

Collections

Citation

Daniel Li, Hervé Queffélec, Luis Rodriguez-Piazza. Infinitesimal Carleson property for weighted measures induced by analytic self-maps of the unit disk. à paraître dans Complex Analysis and Operator Theory. 2012. 〈hal-00704738〉

Partager

Métriques

Consultations de la notice

362

Téléchargements de fichiers

74