Equivariant intersection cohomology of the circle actions

Abstract : In this paper, we prove that the orbit space $B$ and the Euler class of the action $\Phi \colon \sbat \times X \to X$ determine both the equivariant intersection cohomology of the pseudomanifold $X$ and its localization. We also construct a spectral sequence converging to the equivariant intersection cohomology of $X$ whose third term is described in terms of the intersection cohomology of $B$.
Document type :
Journal articles
Complete list of metadatas

Cited literature [12 references]  Display  Hide  Download

https://hal-univ-artois.archives-ouvertes.fr/hal-00579889
Contributor : Martintxo Saralegi-Aranguren <>
Submitted on : Tuesday, September 4, 2012 - 10:35:35 AM
Last modification on : Wednesday, October 10, 2018 - 7:44:01 PM
Long-term archiving on : Wednesday, December 5, 2012 - 10:12:15 AM

Files

EQIntCohoII120820.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00579889, version 2
  • ARXIV : 1103.4964

Collections

Citation

José Ignacio Royo Prieto, Martintxo Saralegi-Aranguren. Equivariant intersection cohomology of the circle actions. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2014, 108 (1), pp.49-62. ⟨hal-00579889v2⟩

Share

Metrics

Record views

495

Files downloads

704