Finitness of the basic intersection cohomology of a Killing foliation

Abstract : We prove that the basic intersection cohomology $ {I\! \! H}^{^{*}}_{_{\overline{p}}}{\left( M/\mathcal{F} \right)}, $ where $\mathcal{F}$ is the singular foliation determined by an isometric action of a Lie group $G$ on the compact manifold $M$, is finite dimensional.
Document type :
Journal articles
Complete list of metadatas

Cited literature [10 references]  Display  Hide  Download

https://hal-univ-artois.archives-ouvertes.fr/hal-00443657
Contributor : Martintxo Saralegi-Aranguren <>
Submitted on : Friday, January 1, 2010 - 10:25:44 PM
Last modification on : Monday, October 29, 2018 - 3:30:04 PM
Long-term archiving on : Friday, June 18, 2010 - 12:13:07 AM

Files

SRF041209.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

M. Saralegi-Aranguren, R. Wolak. Finitness of the basic intersection cohomology of a Killing foliation. Mathematische Zeitschrift, Springer, 2012, 272, pp.443-457. ⟨10.1007/s00209-011-0942-3⟩. ⟨hal-00443657⟩

Share

Metrics

Record views

601

Files downloads

282