Some new thin sets of integers in Harmonic Analysis

Abstract : We randomly construct various subsets $\Lambda$ of the integers which have both smallness and largeness properties. They are small since they are very close, in various meanings, to Sidon sets: the continuous functions with spectrum in $\Lambda$ have uniformly convergent series, and their Fourier coefficients are in $\ell_p$ for all $p>1$; moreover, all the Lebesgue spaces $L^q_\Lambda$ are equal for $q<+\infty$. On the other hand, they are large in the sense that they are dense in the Bohr group and that the space of the bounded functions with spectrum in $\Lambda$ is non separable. So these sets are very different from the thin sets of integers previously known.
Type de document :
Article dans une revue
Journal d'analyse mathématique, Springer, 2002, 86, pp.105-138
Liste complète des métadonnées

Littérature citée [59 références]  Voir  Masquer  Télécharger

https://hal-univ-artois.archives-ouvertes.fr/hal-00442352
Contributeur : Daniel Li <>
Soumis le : lundi 21 décembre 2009 - 08:45:27
Dernière modification le : mardi 3 juillet 2018 - 11:34:18
Document(s) archivé(s) le : jeudi 17 juin 2010 - 23:58:34

Fichiers

JAM.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00442352, version 1
  • ARXIV : 0912.4214

Collections

Citation

Daniel Li, Hervé Queffélec, Luis Rodriguez-Piazza. Some new thin sets of integers in Harmonic Analysis. Journal d'analyse mathématique, Springer, 2002, 86, pp.105-138. 〈hal-00442352〉

Partager

Métriques

Consultations de la notice

300

Téléchargements de fichiers

420