Compact composition operators on Bergman-Orlicz spaces

Abstract : We construct an analytic self-map $\phi$ of the unit disk and an Orlicz function $\Psi$ for which the composition operator of symbol $\phi$ is compact on the Hardy-Orlicz space $H^\Psi$, but not compact on the Bergman-Orlicz space ${\mathfrak B}^\Psi$. For that, we first prove a Carleson embedding theorem, and then characterize the compactness of composition operators on Bergman-Orlicz spaces, in terms of Carleson function (of order $2$). We show that this Carleson function is equivalent to the Nevanlinna counting function of order $2$.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

Cited literature [14 references]  Display  Hide  Download

https://hal-univ-artois.archives-ouvertes.fr/hal-00426831
Contributor : Daniel Li <>
Submitted on : Tuesday, March 30, 2010 - 9:13:23 AM
Last modification on : Thursday, September 27, 2018 - 2:58:02 PM
Long-term archiving on : Thursday, September 23, 2010 - 12:11:28 PM

Files

bergman_var2.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00426831, version 2
  • ARXIV : 0910.5368

Collections

Citation

Pascal Lefèvre, Daniel Li, Hervé Queffélec, Luis Rodriguez-Piazza. Compact composition operators on Bergman-Orlicz spaces. 2010. ⟨hal-00426831v2⟩

Share

Metrics

Record views

474

Files downloads

492